IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49928-0.html
   My bibliography  Save this article

Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays

Author

Listed:
  • Xiaodong Li

    (Max Planck Institute of Microstructure Physics)

  • Li Li

    (University of Science and Technology of China)

  • Xingyuan Chu

    (Dresden University of Technology)

  • Xiaohui Liu

    (Dresden University of Technology)

  • Guangbo Chen

    (Dresden University of Technology)

  • Quanquan Guo

    (Max Planck Institute of Microstructure Physics)

  • Zhen Zhang

    (University of Science and Technology of China)

  • Mingchao Wang

    (Dresden University of Technology)

  • Shuming Wang

    (University of Science and Technology of China)

  • Alexander Tahn

    (Dresden University of Technology)

  • Yongfu Sun

    (University of Science and Technology of China)

  • Xinliang Feng

    (Max Planck Institute of Microstructure Physics
    Dresden University of Technology)

Abstract

Photothermal CO2 conversion to ethanol offers a sustainable solution for achieving net-zero carbon management. However, serious carrier recombination and high C-C coupling energy barrier cause poor performance in ethanol generation. Here, we report a Cu/Cu2Se-Cu2O heterojunction-nanosheet array, showcasing a good ethanol yield under visible–near-infrared light without external heating. The Z-scheme Cu2Se-Cu2O heterostructure provides spatially separated sites for CO2 reduction and water oxidation with boosted carrier transport efficiency. The microreactors induced by Cu2Se nanosheets improve the local concentration of intermediates (CH3* and CO*), thereby promoting C-C coupling process. Photothermal effect of Cu2Se nanosheets elevates system’s temperature to around 200 °C. Through synergizing electron and heat flows, we achieve an ethanol generation rate of 149.45 µmol g−1 h−1, with an electron selectivity of 48.75% and an apparent quantum yield of 0.286%. Our work can serve as inspiration for developing photothermal catalysts for CO2 conversion into multi-carbon chemicals using solar energy.

Suggested Citation

  • Xiaodong Li & Li Li & Xingyuan Chu & Xiaohui Liu & Guangbo Chen & Quanquan Guo & Zhen Zhang & Mingchao Wang & Shuming Wang & Alexander Tahn & Yongfu Sun & Xinliang Feng, 2024. "Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49928-0
    DOI: 10.1038/s41467-024-49928-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49928-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49928-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heng Rao & Luciana C. Schmidt & Julien Bonin & Marc Robert, 2017. "Visible-light-driven methane formation from CO2 with a molecular iron catalyst," Nature, Nature, vol. 548(7665), pages 74-77, August.
    2. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Mujin Cai & Zhiyi Wu & Zhao Li & Lu Wang & Wei Sun & Athanasios A. Tountas & Chaoran Li & Shenghua Wang & Kai Feng & Ao-Bo Xu & Sanli Tang & Alexandra Tavasoli & Meiwen Peng & Wenxuan Liu & Amr S. Hel, 2021. "Greenhouse-inspired supra-photothermal CO2 catalysis," Nature Energy, Nature, vol. 6(8), pages 807-814, August.
    4. Run-Ping Ye & Jie Ding & Weibo Gong & Morris D. Argyle & Qin Zhong & Yujun Wang & Christopher K. Russell & Zhenghe Xu & Armistead G. Russell & Qiaohong Li & Maohong Fan & Yuan-Gen Yao, 2019. "CO2 hydrogenation to high-value products via heterogeneous catalysis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    5. Xiaodong Li & Li Li & Guangbo Chen & Xingyuan Chu & Xiaohui Liu & Chandrasekhar Naisa & Darius Pohl & Markus Löffler & Xinliang Feng, 2023. "Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yang-Fan Xu & Paul N. Duchesne & Lu Wang & Alexandra Tavasoli & Feysal M. Ali & Meikun Xia & Jin-Feng Liao & Dai-Bin Kuang & Geoffrey A. Ozin, 2020. "High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaguang Li & Xianhua Bai & Dachao Yuan & Chenyang Yu & Xingyuan San & Yunna Guo & Liqiang Zhang & Jinhua Ye, 2023. "Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Li, Sha & Haussener, Sophia, 2023. "Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels," Applied Energy, Elsevier, vol. 334(C).
    3. Shuang Yang & Huiqing Yuan & Kai Guo & Zuting Wei & Mei Ming & Jinzhi Yi & Long Jiang & Zhiji Han, 2024. "Fluorinated chlorin chromophores for red-light-driven CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Shou-Heng Liu & Jun-Sheng Lu & Yi-Chiun Chen, 2018. "Sustainable Recovery of CO 2 by Using Visible-Light-Responsive Crystal Cuprous Oxide/Reduced Graphene Oxide," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    6. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Yuqi Ren & Yiwei Fu & Naixu Li & Changjun You & Jie Huang & Kai Huang & Zhenkun Sun & Jiancheng Zhou & Yitao Si & Yuanhao Zhu & Wenshuai Chen & Lunbo Duan & Maochang Liu, 2024. "Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Jiaming Liang & Jiangtao Liu & Lisheng Guo & Wenhang Wang & Chengwei Wang & Weizhe Gao & Xiaoyu Guo & Yingluo He & Guohui Yang & Shuhei Yasuda & Bing Liang & Noritatsu Tsubaki, 2024. "CO2 hydrogenation over Fe-Co bimetallic catalysts with tunable selectivity through a graphene fencing approach," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Guo, Yang & Li, Tengfei & Li, Dan & Cheng, Jiahui, 2024. "Efficient reduction of CO2 to high value-added compounds via photo-thermal catalysis: Mechanisms, catalysts and apparatuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Si Woo Lee & Mauricio Lopez Luna & Nikolay Berdunov & Weiming Wan & Sebastian Kunze & Shamil Shaikhutdinov & Beatriz Roldan Cuenya, 2023. "Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Gui Liu & Pengfei Liu & Deming Meng & Taotao Zhao & Xiaofeng Qian & Qiang He & Xuefeng Guo & Jizhen Qi & Luming Peng & Nianhua Xue & Yan Zhu & Jingyuan Ma & Qiang Wang & Xi Liu & Liwei Chen & Weiping , 2023. "COx hydrogenation to methanol and other hydrocarbons under mild conditions with Mo3S4@ZSM-5," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
    17. Daniel Chuquin-Vasco & Francis Parra & Nelson Chuquin-Vasco & Juan Chuquin-Vasco & Vanesa Lo-Iacono-Ferreira, 2021. "Prediction of Methanol Production in a Carbon Dioxide Hydrogenation Plant Using Neural Networks," Energies, MDPI, vol. 14(13), pages 1-18, July.
    18. Zhongling Li & Wenlong Wu & Menglin Wang & Yanan Wang & Xinlong Ma & Lei Luo & Yue Chen & Kaiyuan Fan & Yang Pan & Hongliang Li & Jie Zeng, 2022. "Ambient-pressure hydrogenation of CO2 into long-chain olefins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Sigmund Jensen & Mathias H. R. Mammen & Martin Hedevang & Zheshen Li & Lutz Lammich & Jeppe V. Lauritsen, 2024. "Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Yingxuan Miao & Yunxuan Zhao & Geoffrey I. N. Waterhouse & Run Shi & Li-Zhu Wu & Tierui Zhang, 2023. "Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49928-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.