IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v548y2017i7665d10.1038_nature23016.html
   My bibliography  Save this article

Visible-light-driven methane formation from CO2 with a molecular iron catalyst

Author

Listed:
  • Heng Rao

    (Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS)

  • Luciana C. Schmidt

    (Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS
    INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba)

  • Julien Bonin

    (Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS)

  • Marc Robert

    (Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS)

Abstract

An iron tetraphenylporphyrin complex is shown to catalyse the reduction of carbon dioxide to methane upon visible light irradiation at ambient temperature and pressure.

Suggested Citation

  • Heng Rao & Luciana C. Schmidt & Julien Bonin & Marc Robert, 2017. "Visible-light-driven methane formation from CO2 with a molecular iron catalyst," Nature, Nature, vol. 548(7665), pages 74-77, August.
  • Handle: RePEc:nat:nature:v:548:y:2017:i:7665:d:10.1038_nature23016
    DOI: 10.1038/nature23016
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature23016
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature23016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Li & Li Li & Xingyuan Chu & Xiaohui Liu & Guangbo Chen & Quanquan Guo & Zhen Zhang & Mingchao Wang & Shuming Wang & Alexander Tahn & Yongfu Sun & Xinliang Feng, 2024. "Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Bonenkamp, T.B. & Middelburg, L.M. & Hosli, M.O. & Wolffenbuttel, R.F., 2020. "From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Shou-Heng Liu & Jun-Sheng Lu & Yi-Chiun Chen, 2018. "Sustainable Recovery of CO 2 by Using Visible-Light-Responsive Crystal Cuprous Oxide/Reduced Graphene Oxide," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    5. Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Sanchita Karmakar & Soumitra Barman & Faruk Ahamed Rahimi & Darsi Rambabu & Sukhendu Nath & Tapas Kumar Maji, 2023. "Confining charge-transfer complex in a metal-organic framework for photocatalytic CO2 reduction in water," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Qinqin Lei & Huiqing Yuan & Jiehao Du & Mei Ming & Shuang Yang & Ya Chen & Jingxiang Lei & Zhiji Han, 2023. "Photocatalytic CO2 reduction with aminoanthraquinone organic dyes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Shuang Yang & Huiqing Yuan & Kai Guo & Zuting Wei & Mei Ming & Jinzhi Yi & Long Jiang & Zhiji Han, 2024. "Fluorinated chlorin chromophores for red-light-driven CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Zhengwei Yang & Zhen-Yu Wu & Zhexing Lin & Tianji Liu & Liping Ding & Wenbo Zhai & Zipeng Chen & Yi Jiang & Jinlei Li & Siyun Ren & Zhenhui Lin & Wangxi Liu & Jianyong Feng & Xing Zhang & Wei Li & Yi , 2024. "Optically selective catalyst design with minimized thermal emission for facilitating photothermal catalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Shuaishuai Wang & Tingrui Li & Chengyihan Gu & Jie Han & Chuan-Gang Zhao & Chengjian Zhu & Hairen Tan & Jin Xie, 2022. "Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:548:y:2017:i:7665:d:10.1038_nature23016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.