IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49794-w.html
   My bibliography  Save this article

Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers

Author

Listed:
  • Elyashiv Zangen

    (The Hebrew University of Jerusalem)

  • Shira Hadar

    (The Hebrew University of Jerusalem)

  • Christopher Lawrence

    (The Hebrew University of Jerusalem)

  • Mustafa Obeid

    (The Hebrew University of Jerusalem)

  • Hala Rasras

    (The Hebrew University of Jerusalem)

  • Ella Hanzin

    (The Hebrew University of Jerusalem)

  • Ori Aslan

    (The Hebrew University of Jerusalem)

  • Eyal Zur

    (The Hebrew University of Jerusalem)

  • Nadav Schulcz

    (The Hebrew University of Jerusalem)

  • Daniel Cohen-Hatab

    (The Hebrew University of Jerusalem)

  • Yona Samama

    (The Hebrew University of Jerusalem)

  • Sarah Nir

    (The Hebrew University of Jerusalem)

  • Yi Li

    (The Hebrew University of Jerusalem)

  • Irina Dobrotvorskia

    (The Hebrew University of Jerusalem)

  • Shai Sabbah

    (The Hebrew University of Jerusalem)

Abstract

While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions’ contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.

Suggested Citation

  • Elyashiv Zangen & Shira Hadar & Christopher Lawrence & Mustafa Obeid & Hala Rasras & Ella Hanzin & Ori Aslan & Eyal Zur & Nadav Schulcz & Daniel Cohen-Hatab & Yona Samama & Sarah Nir & Yi Li & Irina D, 2024. "Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49794-w
    DOI: 10.1038/s41467-024-49794-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49794-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49794-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephane Ciocchi & Cyril Herry & François Grenier & Steffen B. E. Wolff & Johannes J. Letzkus & Ioannis Vlachos & Ingrid Ehrlich & Rolf Sprengel & Karl Deisseroth & Michael B. Stadler & Christian Müll, 2010. "Encoding of conditioned fear in central amygdala inhibitory circuits," Nature, Nature, vol. 468(7321), pages 277-282, November.
    2. Zheng Wu & Anita E. Autry & Joseph F. Bergan & Mitsuko Watabe-Uchida & Catherine G. Dulac, 2014. "Galanin neurons in the medial preoptic area govern parental behaviour," Nature, Nature, vol. 509(7500), pages 325-330, May.
    3. Michael H. Berry & Michael Moldavan & Tavita Garrett & Marc Meadows & Olga Cravetchi & Elizabeth White & Joseph Leffler & Henrique Gersdorff & Kevin M. Wright & Charles N. Allen & Benjamin Sivyer, 2023. "A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. S. Hattar & R. J. Lucas & N. Mrosovsky & S. Thompson & R. H. Douglas & M. W. Hankins & J. Lem & M. Biel & F. Hofmann & R. G. Foster & K.-W. Yau, 2003. "Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice," Nature, Nature, vol. 424(6944), pages 75-81, July.
    5. Monjed H. Samuh & Fortunato Pesarin, 2018. "Applications of conditional power function of two-sample permutation test," Computational Statistics, Springer, vol. 33(4), pages 1847-1862, December.
    6. Lu Huang & Tifei Yuan & Minjie Tan & Yue Xi & Yu Hu & Qian Tao & Zhikai Zhao & Jiajun Zheng & Yushui Han & Fuqiang Xu & Minmin Luo & Patricia J. Sollars & Mingliang Pu & Gary E. Pickard & Kwok-Fai So , 2017. "A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    2. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    3. Danyang Chen & Qianqian Lou & Xiang-Jie Song & Fang Kang & An Liu & Changjian Zheng & Yanhua Li & Di Wang & Sen Qun & Zhi Zhang & Peng Cao & Yan Jin, 2024. "Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Can Tao & Guang-Wei Zhang & Wen-Jian Sun & Junxiang J. Huang & Li I. Zhang & Huizhong Whit Tao, 2024. "Excitation-inhibition imbalance in medial preoptic area circuits underlies chronic stress-induced depression-like states," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Jing-Jing Yan & Xiao-Jing Ding & Ting He & Ai-Xiao Chen & Wen Zhang & Zi-Xian Yu & Xin-Yu Cheng & Chuan-Yao Wei & Qiao-Dan Hu & Xiao-Yao Liu & Yan-Li Zhang & Mengge He & Zhi-Yong Xie & Xi Zha & Chun X, 2022. "A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Chloe Hegoburu & Yan Tang & Ruifang Niu & Supriya Ghosh & Rodrigo Triana Del Rio & Isabel de Araujo Salgado & Marios Abatis & David Alexandre Mota Caseiro & Erwin H. Burg & Christophe Grundschober & R, 2024. "Social buffering in rats reduces fear by oxytocin triggering sustained changes in central amygdala neuronal activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Wei Shang & Shuangyi Xie & Wenbo Feng & Zhuangzhuang Li & Jingyan Jia & Xiaoxiao Cao & Yanting Shen & Jing Li & Haibo Shi & Yiran Gu & Shi-Jun Weng & Longnian Lin & Yi-Hsuan Pan & Xiao-Bing Yuan, 2024. "A non-image-forming visual circuit mediates the innate fear of heights in male mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Masahiro Sawada & Ralph Adolphs & Brian J. Dlouhy & Rick L. Jenison & Ariane E. Rhone & Christopher K. Kovach & Jeremy, D. W. Greenlee & Matthew A. Howard III & Hiroyuki Oya, 2022. "Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Solomiia Korchynska & Patrick Rebernik & Marko Pende & Laura Boi & Alán Alpár & Ramon Tasan & Klaus Becker & Kira Balueva & Saiedeh Saghafi & Peer Wulff & Tamas L. Horvath & Gilberto Fisone & Hans-Ulr, 2022. "A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Eric R. Schuppe & Irene Ballagh & Najva Akbari & Wenxuan Fang & Jonathan T. Perelmuter & Caleb H. Radtke & Margaret A. Marchaterre & Andrew H. Bass, 2024. "Midbrain node for context-specific vocalisation in fish," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Camila Demaestri & Margaux Pisciotta & Naira Altunkeser & Georgia Berry & Hannah Hyland & Jocelyn Breton & Anna Darling & Brenna Williams & Kevin G. Bath, 2024. "Central amygdala CRF+ neurons promote heightened threat reactivity following early life adversity in mice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Michael H. Berry & Michael Moldavan & Tavita Garrett & Marc Meadows & Olga Cravetchi & Elizabeth White & Joseph Leffler & Henrique Gersdorff & Kevin M. Wright & Charles N. Allen & Benjamin Sivyer, 2023. "A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49794-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.