IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32644-y.html
   My bibliography  Save this article

Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation

Author

Listed:
  • Masahiro Sawada

    (University of Iowa
    Tazuke Kofukai Medical Research Institute and Kitano Hospital)

  • Ralph Adolphs

    (California Institute of Technology)

  • Brian J. Dlouhy

    (University of Iowa
    University of Iowa)

  • Rick L. Jenison

    (University of Wisconsin - Madison)

  • Ariane E. Rhone

    (University of Iowa)

  • Christopher K. Kovach

    (University of Iowa)

  • Jeremy, D. W. Greenlee

    (University of Iowa
    University of Iowa)

  • Matthew A. Howard III

    (University of Iowa
    University of Iowa
    University of Iowa)

  • Hiroyuki Oya

    (University of Iowa
    University of Iowa)

Abstract

The primate amygdala is a complex consisting of over a dozen nuclei that have been implicated in a host of cognitive functions, individual differences, and psychiatric illnesses. These functions are implemented through distinct connectivity profiles, which have been documented in animals but remain largely unknown in humans. Here we present results from 25 neurosurgical patients who had concurrent electrical stimulation of the amygdala with intracranial electroencephalography (electrical stimulation tract-tracing; es-TT), or fMRI (electrical stimulation fMRI; es-fMRI), methods providing strong inferences about effective connectivity of amygdala subdivisions with the rest of the brain. We quantified functional connectivity with medial and lateral amygdala, the temporal order of these connections on the timescale of milliseconds, and also detail second-order effective connectivity among the key nodes. These findings provide a uniquely detailed characterization of human amygdala functional connectivity that will inform functional neuroimaging studies in healthy and clinical populations.

Suggested Citation

  • Masahiro Sawada & Ralph Adolphs & Brian J. Dlouhy & Rick L. Jenison & Ariane E. Rhone & Christopher K. Kovach & Jeremy, D. W. Greenlee & Matthew A. Howard III & Hiroyuki Oya, 2022. "Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32644-y
    DOI: 10.1038/s41467-022-32644-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32644-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32644-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephane Ciocchi & Cyril Herry & François Grenier & Steffen B. E. Wolff & Johannes J. Letzkus & Ioannis Vlachos & Ingrid Ehrlich & Rolf Sprengel & Karl Deisseroth & Michael B. Stadler & Christian Müll, 2010. "Encoding of conditioned fear in central amygdala inhibitory circuits," Nature, Nature, vol. 468(7321), pages 277-282, November.
    2. Rick L Jenison, 2014. "Directional Influence between the Human Amygdala and Orbitofrontal Cortex at the Time of Decision-Making," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-15, October.
    3. Wulf Haubensak & Prabhat S. Kunwar & Haijiang Cai & Stephane Ciocchi & Nicholas R. Wall & Ravikumar Ponnusamy & Jonathan Biag & Hong-Wei Dong & Karl Deisseroth & Edward M. Callaway & Michael S. Fansel, 2010. "Genetic dissection of an amygdala microcircuit that gates conditioned fear," Nature, Nature, vol. 468(7321), pages 270-276, November.
    4. Sébastien Ballesta & Weikang Shi & Katherine E. Conen & Camillo Padoa-Schioppa, 2020. "Values encoded in orbitofrontal cortex are causally related to economic choices," Nature, Nature, vol. 588(7838), pages 450-453, December.
    5. Ayumu Yamashita & Yuki Sakai & Takashi Yamada & Noriaki Yahata & Akira Kunimatsu & Naohiro Okada & Takashi Itahashi & Ryuichiro Hashimoto & Hiroto Mizuta & Naho Ichikawa & Masahiro Takamura & Go Okada, 2020. "Generalizable brain network markers of major depressive disorder across multiple imaging sites," PLOS Biology, Public Library of Science, vol. 18(12), pages 1-26, December.
    6. Kay M. Tye & Rohit Prakash & Sung-Yon Kim & Lief E. Fenno & Logan Grosenick & Hosniya Zarabi & Kimberly R. Thompson & Viviana Gradinaru & Charu Ramakrishnan & Karl Deisseroth, 2011. "Amygdala circuitry mediating reversible and bidirectional control of anxiety," Nature, Nature, vol. 471(7338), pages 358-362, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    3. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Jing-Jing Yan & Xiao-Jing Ding & Ting He & Ai-Xiao Chen & Wen Zhang & Zi-Xian Yu & Xin-Yu Cheng & Chuan-Yao Wei & Qiao-Dan Hu & Xiao-Yao Liu & Yan-Li Zhang & Mengge He & Zhi-Yong Xie & Xi Zha & Chun X, 2022. "A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Chloe Hegoburu & Yan Tang & Ruifang Niu & Supriya Ghosh & Rodrigo Triana Del Rio & Isabel de Araujo Salgado & Marios Abatis & David Alexandre Mota Caseiro & Erwin H. Burg & Christophe Grundschober & R, 2024. "Social buffering in rats reduces fear by oxytocin triggering sustained changes in central amygdala neuronal activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Elyashiv Zangen & Shira Hadar & Christopher Lawrence & Mustafa Obeid & Hala Rasras & Ella Hanzin & Ori Aslan & Eyal Zur & Nadav Schulcz & Daniel Cohen-Hatab & Yona Samama & Sarah Nir & Yi Li & Irina D, 2024. "Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Patricia L. Lockwood & Jo Cutler & Daniel Drew & Ayat Abdurahman & Deva Sanjeeva Jeyaretna & Matthew A. J. Apps & Masud Husain & Sanjay G. Manohar, 2024. "Human ventromedial prefrontal cortex is necessary for prosocial motivation," Nature Human Behaviour, Nature, vol. 8(7), pages 1403-1416, July.
    8. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    9. Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    11. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Ren-Wen Han & Zi-Yi Zhang & Chen Jiao & Ze-Yu Hu & Bing-Xing Pan, 2024. "Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Danyang Chen & Qianqian Lou & Xiang-Jie Song & Fang Kang & An Liu & Changjian Zheng & Yanhua Li & Di Wang & Sen Qun & Zhi Zhang & Peng Cao & Yan Jin, 2024. "Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Linda Q. Yu & Jason Dana & Joseph W. Kable, 2022. "Individuals with ventromedial frontal damage display unstable but transitive preferences during decision making," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Sébastien Ballesta & Weikang Shi & Camillo Padoa-Schioppa, 2022. "Orbitofrontal cortex contributes to the comparison of values underlying economic choices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    17. Romane Cecchi & Antoine Collomb-Clerc & Inès Rachidi & Lorella Minotti & Philippe Kahane & Mathias Pessiglione & Julien Bastin, 2024. "Direct stimulation of anterior insula and ventromedial prefrontal cortex disrupts economic choices," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. C. Nicolas & A. Ju & Y. Wu & H. Eldirdiri & S. Delcasso & Y. Couderc & C. Fornari & A. Mitra & L. Supiot & A. Vérité & M. Masson & S. Rodriguez-Rozada & D. Jacky & J. S. Wiegert & A. Beyeler, 2023. "Linking emotional valence and anxiety in a mouse insula-amygdala circuit," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Gregory J. Salimando & Sébastien Tremblay & Blake A. Kimmey & Jia Li & Sophie A. Rogers & Jessica A. Wojick & Nora M. McCall & Lisa M. Wooldridge & Amrith Rodrigues & Tito Borner & Kristin L. Gardiner, 2023. "Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    20. Iván J Santos-Soto & Nataliya Chorna & Néstor M Carballeira & José G Vélez-Bartolomei & Ana T Méndez-Merced & Anatoliy P Chornyy & Sandra Peña de Ortiz, 2013. "Voluntary Running in Young Adult Mice Reduces Anxiety-Like Behavior and Increases the Accumulation of Bioactive Lipids in the Cerebral Cortex," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32644-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.