IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48147-x.html
   My bibliography  Save this article

A non-image-forming visual circuit mediates the innate fear of heights in male mice

Author

Listed:
  • Wei Shang

    (East China Normal University)

  • Shuangyi Xie

    (East China Normal University)

  • Wenbo Feng

    (East China Normal University)

  • Zhuangzhuang Li

    (Otolaryngology Institute of Shanghai Jiao Tong University)

  • Jingyan Jia

    (East China Normal University)

  • Xiaoxiao Cao

    (East China Normal University)

  • Yanting Shen

    (East China Normal University)

  • Jing Li

    (East China Normal University)

  • Haibo Shi

    (Otolaryngology Institute of Shanghai Jiao Tong University)

  • Yiran Gu

    (East China Normal University)

  • Shi-Jun Weng

    (Fudan University)

  • Longnian Lin

    (East China Normal University)

  • Yi-Hsuan Pan

    (East China Normal University)

  • Xiao-Bing Yuan

    (East China Normal University)

Abstract

The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.

Suggested Citation

  • Wei Shang & Shuangyi Xie & Wenbo Feng & Zhuangzhuang Li & Jingyan Jia & Xiaoxiao Cao & Yanting Shen & Jing Li & Haibo Shi & Yiran Gu & Shi-Jun Weng & Longnian Lin & Yi-Hsuan Pan & Xiao-Bing Yuan, 2024. "A non-image-forming visual circuit mediates the innate fear of heights in male mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48147-x
    DOI: 10.1038/s41467-024-48147-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48147-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48147-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengfei Wei & Nan Liu & Zhijian Zhang & Xuemei Liu & Yongqiang Tang & Xiaobin He & Bifeng Wu & Zheng Zhou & Yaohan Liu & Juan Li & Yi Zhang & Xuanyi Zhou & Lin Xu & Lin Chen & Guoqiang Bi & Xintian Hu, 2015. "Processing of visually evoked innate fear by a non-canonical thalamic pathway," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    2. Congping Shang & Zijun Chen & Aixue Liu & Yang Li & Jiajing Zhang & Baole Qu & Fei Yan & Yaning Zhang & Weixiu Liu & Zhihui Liu & Xiaofei Guo & Dapeng Li & Yi Wang & Peng Cao, 2018. "Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    3. Pengfei Wei & Nan Liu & Zhijian Zhang & Xuemei Liu & Yongqiang Tang & Xiaobin He & Bifeng Wu & Zheng Zhou & Yaohan Liu & Juan Li & Yi Zhang & Xuanyi Zhou & Lin Xu & Lin Chen & Guoqiang Bi & Xintian Hu, 2015. "Correction: Corrigendum: Processing of visually evoked innate fear by a non-canonical thalamic pathway," Nature Communications, Nature, vol. 6(1), pages 1-1, November.
    4. Lu Huang & Tifei Yuan & Minjie Tan & Yue Xi & Yu Hu & Qian Tao & Zhikai Zhao & Jiajun Zheng & Yushui Han & Fuqiang Xu & Minmin Luo & Patricia J. Sollars & Mingliang Pu & Gary E. Pickard & Kwok-Fai So , 2017. "A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    5. Dominic A. Evans & A. Vanessa Stempel & Ruben Vale & Sabine Ruehle & Yaara Lefler & Tiago Branco, 2018. "A synaptic threshold mechanism for computing escape decisions," Nature, Nature, vol. 558(7711), pages 590-594, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan Pang & Zhiguo Liu & Jiani Chen & Zhi Dong & Sicong Zhou & Qichao Zhang & Yueqi Lu & Yifeng Sheng & Xuexin Chen & Jianhua Huang, 2022. "Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Ami Ritter & Shlomi Habusha & Lior Givon & Shahaf Edut & Oded Klavir, 2024. "Prefrontal control of superior colliculus modulates innate escape behavior following adversity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Elyashiv Zangen & Shira Hadar & Christopher Lawrence & Mustafa Obeid & Hala Rasras & Ella Hanzin & Ori Aslan & Eyal Zur & Nadav Schulcz & Daniel Cohen-Hatab & Yona Samama & Sarah Nir & Yi Li & Irina D, 2024. "Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Suma Chinta & Scott R. Pluta, 2023. "Neural mechanisms for the localization of unexpected external motion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Clément Solié & Alessandro Contestabile & Pedro Espinosa & Stefano Musardo & Sebastiano Bariselli & Chieko Huber & Alan Carleton & Camilla Bellone, 2022. "Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Jacob D Davidson & Ahmed El Hady, 2019. "Foraging as an evidence accumulation process," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-25, July.
    7. Wen Z. Yang & Hengchang Xie & Xiaosa Du & Qian Zhou & Yan Xiao & Zhengdong Zhao & Xiaoning Jia & Jianhui Xu & Wen Zhang & Shuang Cai & Zhangjie Li & Xin Fu & Rong Hua & Junhao Cai & Shuang Chang & Jin, 2023. "A parabrachial-hypothalamic parallel circuit governs cold defense in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Fernando M. C. V. Reis & Sandra Maesta-Pereira & Matthias Ollivier & Peter J. Schuette & Ekayana Sethi & Blake A. Miranda & Emily Iniguez & Meghmik Chakerian & Eric Vaughn & Megha Sehgal & Darren C. T, 2024. "Control of feeding by a bottom-up midbrain-subthalamic pathway," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Takashi Nagashima & Suguru Tohyama & Kaori Mikami & Masashi Nagase & Mieko Morishima & Atsushi Kasai & Hitoshi Hashimoto & Ayako M. Watabe, 2022. "Parabrachial-to-parasubthalamic nucleus pathway mediates fear-induced suppression of feeding in male mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Alyse Thomas & Weiguo Yang & Catherine Wang & Sri Laasya Tipparaju & Guang Chen & Brennan Sullivan & Kylie Swiekatowski & Mahima Tatam & Charles Gerfen & Nuo Li, 2023. "Superior colliculus bidirectionally modulates choice activity in frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48147-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.