IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05584-9.html
   My bibliography  Save this article

Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells

Author

Listed:
  • Juanzhu Yan

    (Xiamen University)

  • Sami Malola

    (University of Jyväskylä)

  • Chengyi Hu

    (Xiamen University)

  • Jian Peng

    (Xiamen University)

  • Birger Dittrich

    (Universitätsstrasse 1)

  • Boon K. Teo

    (Xiamen University)

  • Hannu Häkkinen

    (University of Jyväskylä)

  • Lansun Zheng

    (Xiamen University)

  • Nanfeng Zheng

    (Xiamen University)

Abstract

This paper reports co-crystallization of two atomically precise, different-size ligand-stabilized nanoclusters, a spherical (AuAg)267(SR)80 and a smaller trigonal-prismatic (AuAg)45(SR)27(PPh3)6 in 1:1 ratio, characterized fully by X-ray crystallographic analysis (SR = 2,4-SPhMe2). The larger cluster has a four concentric-shell icosahedral structure of Ag@M12@M42@M92@Ag120(SR)80 (M = Au or Ag) with the inner-core M147 icosahedron observed here for metal nanoparticles. The cluster has an open electron shell of 187 delocalized electrons, fully metallic, plasmonic behavior, and a zero HOMO-LUMO energy gap. The smaller cluster has an 18-electron shell closing, a notable HOMO-LUMO energy gap and a molecule-like optical spectrum. This is the first direct demonstration of the simultaneous presence of competing effects (closing of atom vs. electron shells) in nanocluster synthesis and growth, working together to form a co-crystal of different-sized clusters. This observation suggests a strategy that may be helpful in the design of other nanocluster systems via co-crystallization.

Suggested Citation

  • Juanzhu Yan & Sami Malola & Chengyi Hu & Jian Peng & Birger Dittrich & Boon K. Teo & Hannu Häkkinen & Lansun Zheng & Nanfeng Zheng, 2018. "Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05584-9
    DOI: 10.1038/s41467-018-05584-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05584-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05584-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi-Ming Luo & Chun-Hua Gong & Fangfang Pan & Yubing Si & Jia-Wang Yuan & Muhammad Asad & Xi-Yan Dong & Shuang-Quan Zang & Thomas C. W. Mak, 2022. "Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xi Kang & Xiao Wei & Xiaokang Liu & Sicong Wang & Tao Yao & Shuxin Wang & Manzhou Zhu, 2021. "A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05584-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.