IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49472-x.html
   My bibliography  Save this article

Stabilized ε-Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis

Author

Listed:
  • Fei Qian

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Jiawei Bai

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Yi Cai

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Hui Yang

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Xue-Min Cao

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Xingchen Liu

    (Chinese Academy of Sciences)

  • Xing-Wu Liu

    (Huairou District)

  • Yong Yang

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Yong-Wang Li

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

  • Ding Ma

    (Peking University)

  • Xiao-Dong Wen

    (Chinese Academy of Sciences
    Huairou District
    University of Chinese Academy of Sciences)

Abstract

Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.

Suggested Citation

  • Fei Qian & Jiawei Bai & Yi Cai & Hui Yang & Xue-Min Cao & Xingchen Liu & Xing-Wu Liu & Yong Yang & Yong-Wang Li & Ding Ma & Xiao-Dong Wen, 2024. "Stabilized ε-Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49472-x
    DOI: 10.1038/s41467-024-49472-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49472-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49472-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yinwen Li & Wa Gao & Mi Peng & Junbo Zhang & Jialve Sun & Yao Xu & Song Hong & Xi Liu & Xingwu Liu & Min Wei & Bingsen Zhang & Ding Ma, 2020. "Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Liangshu Zhong & Fei Yu & Yunlei An & Yonghui Zhao & Yuhan Sun & Zhengjia Li & Tiejun Lin & Yanjun Lin & Xingzhen Qi & Yuanyuan Dai & Lin Gu & Jinsong Hu & Shifeng Jin & Qun Shen & Hui Wang, 2016. "Cobalt carbide nanoprisms for direct production of lower olefins from syngas," Nature, Nature, vol. 538(7623), pages 84-87, October.
    3. Vera P. Santos & Tim A. Wezendonk & Juan José Delgado Jaén & A. Iulian Dugulan & Maxim A. Nasalevich & Husn-Ubayda Islam & Adam Chojecki & Sina Sartipi & Xiaohui Sun & Abrar A. Hakeem & Ard C.J. Koeke, 2015. "Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlong Wu & Jiahua Luo & Jiankang Zhao & Menglin Wang & Lei Luo & Sunpei Hu & Bingxuan He & Chao Ma & Hongliang Li & Jie Zeng, 2024. "Facet sensitivity of iron carbides in Fischer-Tropsch synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Na Li & Yifeng Zhu & Feng Jiao & Xiulian Pan & Qike Jiang & Jun Cai & Yifan Li & Wei Tong & Changqi Xu & Shengcheng Qu & Bing Bai & Dengyun Miao & Zhi Liu & Xinhe Bao, 2022. "Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yanfei Xu & Zhenxuan Zhang & Ke Wu & Jungang Wang & Bo Hou & Ruoting Shan & Ling Li & Mingyue Ding, 2024. "Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Hailing Yu & Caiqi Wang & Xin Xin & Yao Wei & Shenggang Li & Yunlei An & Fanfei Sun & Tiejun Lin & Liangshu Zhong, 2024. "Engineering ZrO2–Ru interface to boost Fischer-Tropsch synthesis to olefins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Juwen Gu & Wanbing Gong & Qian Zhang & Ran Long & Jun Ma & Xinyu Wang & Jiawei Li & Jiayi Li & Yujian Fan & Xinqi Zheng & Songbai Qiu & Tiejun Wang & Yujie Xiong, 2023. "Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Chuanhao Wang & Junjie Du & Lin Zeng & Zhongling Li & Yizhou Dai & Xu Li & Zijun Peng & Wenlong Wu & Hongliang Li & Jie Zeng, 2023. "Direct synthesis of extra-heavy olefins from carbon monoxide and water," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Guo Tian & Zhengwen Li & Chenxi Zhang & Xinyan Liu & Xiaoyu Fan & Kui Shen & Haibin Meng & Ning Wang & Hao Xiong & Mingyu Zhao & Xiaoyu Liang & Liqiang Luo & Lan Zhang & Binhang Yan & Xiao Chen & Hong, 2024. "Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Zhao, Zhitong & Chong, Katie & Jiang, Jingyang & Wilson, Karen & Zhang, Xiaochen & Wang, Feng, 2018. "Low-carbon roadmap of chemical production: A case study of ethylene in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 580-591.
    11. Wang, Danfeng & Gu, Yu & Chen, Qianqian & Tang, Zhiyong, 2023. "Direct conversion of syngas to alpha olefins via Fischer–Tropsch synthesis: Process development and comparative techno-economic-environmental analysis," Energy, Elsevier, vol. 263(PE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49472-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.