IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13691-4.html
   My bibliography  Save this article

Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols

Author

Listed:
  • Yinwen Li

    (Beijing University of Chemical Technology)

  • Wa Gao

    (College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University)

  • Mi Peng

    (College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University)

  • Junbo Zhang

    (Beijing University of Chemical Technology)

  • Jialve Sun

    (Beijing University of Chemical Technology)

  • Yao Xu

    (College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University)

  • Song Hong

    (Beijing University of Chemical Technology)

  • Xi Liu

    (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan
    Synfuels China Beijing)

  • Xingwu Liu

    (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan
    Synfuels China Beijing)

  • Min Wei

    (Beijing University of Chemical Technology)

  • Bingsen Zhang

    (Institute of Metal Research, Chinese Academy of Sciences)

  • Ding Ma

    (College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University)

Abstract

Long-chain alcohols synthesis (LAS, C5+OH) from syngas provides a promising route for the conversion of coal/biomass/natural gas into high-value chemicals. Cu-Fe binary catalysts, with the merits of cost effectiveness and high CO conversion, have attracted considerable attention. Here we report a nano-construct of a Fe5C2-Cu interfacial catalyst derived from Cu4Fe1Mg4-layered double hydroxide (Cu4Fe1Mg4-LDH) precursor, i.e., Fe5C2 clusters (~2 nm) are immobilized onto the surface of Cu nanoparticles (~25 nm). The interfacial catalyst exhibits a CO conversion of 53.2%, a selectivity of 14.8 mol% and a space time yield of 0.101 g gcat−1 h−1 for long-chain alcohols, with a surprisingly benign reaction pressure of 1 MPa. This catalytic performance, to the best of our knowledge, is comparable to the optimal level of Cu-Fe catalysts operated at much higher pressure (normally above 3 MPa).

Suggested Citation

  • Yinwen Li & Wa Gao & Mi Peng & Junbo Zhang & Jialve Sun & Yao Xu & Song Hong & Xi Liu & Xingwu Liu & Min Wei & Bingsen Zhang & Ding Ma, 2020. "Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13691-4
    DOI: 10.1038/s41467-019-13691-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13691-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13691-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo Tian & Zhengwen Li & Chenxi Zhang & Xinyan Liu & Xiaoyu Fan & Kui Shen & Haibin Meng & Ning Wang & Hao Xiong & Mingyu Zhao & Xiaoyu Liang & Liqiang Luo & Lan Zhang & Binhang Yan & Xiao Chen & Hong, 2024. "Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Fei Qian & Jiawei Bai & Yi Cai & Hui Yang & Xue-Min Cao & Xingchen Liu & Xing-Wu Liu & Yong Yang & Yong-Wang Li & Ding Ma & Xiao-Dong Wen, 2024. "Stabilized ε-Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Juwen Gu & Wanbing Gong & Qian Zhang & Ran Long & Jun Ma & Xinyu Wang & Jiawei Li & Jiayi Li & Yujian Fan & Xinqi Zheng & Songbai Qiu & Tiejun Wang & Yujie Xiong, 2023. "Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13691-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.