IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54578-3.html
   My bibliography  Save this article

The role of manganese in CoMnOx catalysts for selective long-chain hydrocarbon production via Fischer-Tropsch synthesis

Author

Listed:
  • Hao Chen

    (Lawrence Berkeley National Laboratory)

  • Zan Lian

    (Barcelona Institute of Science and Technology (BIST))

  • Xiao Zhao

    (Lawrence Berkeley National Laboratory
    University of California)

  • Jiawei Wan

    (Lawrence Berkeley National Laboratory
    University of California)

  • Priscilla F. Pieters

    (University of California)

  • Judit Oliver-Meseguer

    (Lawrence Berkeley National Laboratory)

  • Ji Yang

    (Lawrence Berkeley National Laboratory)

  • Elzbieta Pach

    (Lawrence Berkeley National Laboratory)

  • Sophie Carenco

    (Lawrence Berkeley National Laboratory)

  • Laureline Treps

    (Lawrence Berkeley National Laboratory)

  • Nikos Liakakos

    (Lawrence Berkeley National Laboratory)

  • Yu Shan

    (Lawrence Berkeley National Laboratory
    University of California)

  • Virginia Altoe

    (Lawrence Berkeley National Laboratory)

  • Ed Wong

    (Lawrence Berkeley National Laboratory)

  • Zengqing Zhuo

    (Lawrence Berkeley National Laboratory)

  • Feipeng Yang

    (Lawrence Berkeley National Laboratory)

  • Ji Su

    (Lawrence Berkeley National Laboratory)

  • Jinghua Guo

    (Lawrence Berkeley National Laboratory)

  • Monika Blum

    (Lawrence Berkeley National Laboratory)

  • Saul H. Lapidus

    (Argonne National Laboratory)

  • Adrian Hunt

    (Brookhaven National Laboratory)

  • Iradwikanari Waluyo

    (Brookhaven National Laboratory)

  • Hirohito Ogasawara

    (SLAC National Accelerator Laboratory)

  • Haimei Zheng

    (Lawrence Berkeley National Laboratory
    University of California)

  • Peidong Yang

    (Lawrence Berkeley National Laboratory
    University of California
    University of California)

  • Alexis T. Bell

    (Lawrence Berkeley National Laboratory
    University of California)

  • Núria López

    (Barcelona Institute of Science and Technology (BIST))

  • Miquel Salmeron

    (Lawrence Berkeley National Laboratory
    Lawrence Berkeley National Laboratory
    University of California)

Abstract

Cobalt is an efficient catalyst for Fischer−Tropsch synthesis (FTS) of hydrocarbons from syngas (CO + H2) with enhanced selectivity for long-chain hydrocarbons when promoted by Manganese. However, the molecular scale origin of the enhancement remains unclear. Here we present an experimental and theoretical study using model catalysts consisting of crystalline CoMnOx nanoparticles and thin films, where Co and Mn are mixed at the sub-nm scale. Employing TEM and in-situ X-ray spectroscopies (XRD, APXPS, and XAS), we determine the catalyst’s atomic structure, chemical state, reactive species, and their evolution under FTS conditions. We show the concentration of CHx, the key intermediates, increases rapidly on CoMnOx, while no increase occurs without Mn. DFT simulations reveal that basic O sites in CoMnOx bind hydrogen atoms resulting from H2 dissociation on Co0 sites, making them less available to react with CHx intermediates, thus hindering chain termination reactions, which promotes the formation of long-chain hydrocarbons.

Suggested Citation

  • Hao Chen & Zan Lian & Xiao Zhao & Jiawei Wan & Priscilla F. Pieters & Judit Oliver-Meseguer & Ji Yang & Elzbieta Pach & Sophie Carenco & Laureline Treps & Nikos Liakakos & Yu Shan & Virginia Altoe & E, 2024. "The role of manganese in CoMnOx catalysts for selective long-chain hydrocarbon production via Fischer-Tropsch synthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54578-3
    DOI: 10.1038/s41467-024-54578-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54578-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54578-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liangshu Zhong & Fei Yu & Yunlei An & Yonghui Zhao & Yuhan Sun & Zhengjia Li & Tiejun Lin & Yanjun Lin & Xingzhen Qi & Yuanyuan Dai & Lin Gu & Jinsong Hu & Shifeng Jin & Qun Shen & Hui Wang, 2016. "Cobalt carbide nanoprisms for direct production of lower olefins from syngas," Nature, Nature, vol. 538(7623), pages 84-87, October.
    2. Yizhi Xiang & Libor Kovarik & Norbert Kruse, 2019. "Rate and selectivity hysteresis during the carbon monoxide hydrogenation over promoted Co/MnOx catalysts," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Li & Yifeng Zhu & Feng Jiao & Xiulian Pan & Qike Jiang & Jun Cai & Yifan Li & Wei Tong & Changqi Xu & Shengcheng Qu & Bing Bai & Dengyun Miao & Zhi Liu & Xinhe Bao, 2022. "Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Fei Qian & Jiawei Bai & Yi Cai & Hui Yang & Xue-Min Cao & Xingchen Liu & Xing-Wu Liu & Yong Yang & Yong-Wang Li & Ding Ma & Xiao-Dong Wen, 2024. "Stabilized ε-Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yanfei Xu & Zhenxuan Zhang & Ke Wu & Jungang Wang & Bo Hou & Ruoting Shan & Ling Li & Mingyue Ding, 2024. "Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Hailing Yu & Caiqi Wang & Xin Xin & Yao Wei & Shenggang Li & Yunlei An & Fanfei Sun & Tiejun Lin & Liangshu Zhong, 2024. "Engineering ZrO2–Ru interface to boost Fischer-Tropsch synthesis to olefins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Chuanhao Wang & Junjie Du & Lin Zeng & Zhongling Li & Yizhou Dai & Xu Li & Zijun Peng & Wenlong Wu & Hongliang Li & Jie Zeng, 2023. "Direct synthesis of extra-heavy olefins from carbon monoxide and water," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Wenlong Wu & Jiahua Luo & Jiankang Zhao & Menglin Wang & Lei Luo & Sunpei Hu & Bingxuan He & Chao Ma & Hongliang Li & Jie Zeng, 2024. "Facet sensitivity of iron carbides in Fischer-Tropsch synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Zhao, Zhitong & Chong, Katie & Jiang, Jingyang & Wilson, Karen & Zhang, Xiaochen & Wang, Feng, 2018. "Low-carbon roadmap of chemical production: A case study of ethylene in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 580-591.
    9. Wang, Danfeng & Gu, Yu & Chen, Qianqian & Tang, Zhiyong, 2023. "Direct conversion of syngas to alpha olefins via Fischer–Tropsch synthesis: Process development and comparative techno-economic-environmental analysis," Energy, Elsevier, vol. 263(PE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54578-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.