IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49247-4.html
   My bibliography  Save this article

Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion

Author

Listed:
  • Yangyang Zhang

    (University of Science and Technology of China)

  • Yanxu Chen

    (University of Science and Technology of China)

  • Xiaowen Wang

    (University of Science and Technology of China)

  • Yafei Feng

    (University of Science and Technology of China)

  • Zechuan Dai

    (University of Science and Technology of China)

  • Mingyu Cheng

    (University of Science and Technology of China)

  • Genqiang Zhang

    (University of Science and Technology of China)

Abstract

The carbon−carbon coupling at the Cu/Cu2O Schottky interface has been widely recognized as a promising approach for electrocatalytic CO2 conversion into value-added alcohols. However, the limited selectivity of C2+ alcohols persists due to the insufficient control over rectifying interface characteristics required for precise bonding of oxyhydrocarbons. Herein, we present an investigation into the manipulation of the coordination environment of Cu sites through an in-situ electrochemical reconstruction strategy, which indicates that the construction of low-coordinated Cu sites at the Cu/Cu2O interface facilitates the enhanced rectifying interfaces, and induces asymmetric electronic perturbation and faster electron exchange, thereby boosting C-C coupling and bonding oxyhydrocarbons towards the nucleophilic reaction process of *H2CCO-CO. Impressively, the low-coordinated Cu sites at the Cu/Cu2O interface exhibit superior faradic efficiency of 64.15 ± 1.92% and energy efficiency of ~39.32% for C2+ alcohols production, while maintaining stability for over 50 h (faradic efficiency >50%, total current density = 200 mA cm−2) in a flow-cell electrolyzer. Theoretical calculations, operando synchrotron radiation Fourier transform infrared spectroscopy, and Raman experiments decipher that the low-coordinated Cu sites at the Cu/Cu2O interface can enhance the coverage of *CO and adsorption of *CH2CO and CH2CHO, facilitating the formation of C2+ alcohols.

Suggested Citation

  • Yangyang Zhang & Yanxu Chen & Xiaowen Wang & Yafei Feng & Zechuan Dai & Mingyu Cheng & Genqiang Zhang, 2024. "Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49247-4
    DOI: 10.1038/s41467-024-49247-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49247-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49247-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yimin A. Wu & Ian McNulty & Cong Liu & Kah Chun Lau & Qi Liu & Arvydas P. Paulikas & Cheng-Jun Sun & Zhonghou Cai & Jeffrey R. Guest & Yang Ren & Vojislav Stamenkovic & Larry A. Curtiss & Yuzi Liu & T, 2019. "Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol," Nature Energy, Nature, vol. 4(11), pages 957-968, November.
    3. Geonhui Lee & Yuguang C. Li & Ji-Yong Kim & Tao Peng & Dae-Hyun Nam & Armin Sedighian Rasouli & Fengwang Li & Mingchuan Luo & Alexander H. Ip & Young-Chang Joo & Edward H. Sargent, 2021. "Electrochemical upgrade of CO2 from amine capture solution," Nature Energy, Nature, vol. 6(1), pages 46-53, January.
    4. Wenzhe Niu & Zheng Chen & Wen Guo & Wei Mao & Yi Liu & Yunna Guo & Jingzhao Chen & Rui Huang & Lin Kang & Yiwen Ma & Qisheng Yan & Jinyu Ye & Chunyu Cui & Liqiang Zhang & Peng Wang & Xin Xu & Bo Zhang, 2023. "Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xianhu Sun & Dongxiang Wu & Lianfeng Zou & Stephen D. House & Xiaobo Chen & Meng Li & Dmitri N. Zakharov & Judith C. Yang & Guangwen Zhou, 2022. "Dislocation-induced stop-and-go kinetics of interfacial transformations," Nature, Nature, vol. 607(7920), pages 708-713, July.
    6. Jian Jin & Joshua Wicks & Qiuhong Min & Jun Li & Yongfeng Hu & Jingyuan Ma & Yu Wang & Zheng Jiang & Yi Xu & Ruihu Lu & Gangzheng Si & Panagiotis Papangelakis & Mohsen Shakouri & Qunfeng Xiao & Pengfe, 2023. "Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction," Nature, Nature, vol. 617(7962), pages 724-729, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ahmad, Naveed & Chen, Ying & Wang, Xiaoxiao & Sun, Peixu & Bao, Yuting & Xu, Xia, 2022. "Highly efficient electrochemical upgrade of CO2 to CO using AMP capture solution as electrolyte," Renewable Energy, Elsevier, vol. 189(C), pages 444-453.
    3. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    4. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yao Zhang & Zezhou Li & Xing Tong & Zhiheng Xie & Siwei Huang & Yue-E Zhang & Hai-Bo Ke & Wei-Hua Wang & Jihan Zhou, 2024. "Three-dimensional atomic insights into the metal-oxide interface in Zr-ZrO2 nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Mingru Bai & Ting Wang & Zhenyu Xing & Haoju Huang & Xizheng Wu & Mohsen Adeli & Mao Wang & Xianglong Han & Ling Ye & Chong Cheng, 2024. "Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    9. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Nannan Meng & Zhitan Wu & Yanmei Huang & Jie Zhang & Maoxin Chen & Haibin Ma & Hongjiao Li & Shibo Xi & Ming Lin & Wenya Wu & Shuhe Han & Yifu Yu & Quan-Hong Yang & Bin Zhang & Kian Ping Loh, 2024. "High yield electrosynthesis of oxygenates from CO using a relay Cu-Ag co-catalyst system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Lei Chen & Junmei Chen & Weiwei Fu & Jiayi Chen & Di Wang & Yukun Xiao & Shibo Xi & Yongfei Ji & Lei Wang, 2024. "Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Ramirez-Corredores, M.M. & Diaz, Luis A. & Gaffney, Anne M. & Zarzana, Christopher A., 2021. "Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Laihao Luo & Xinyan Liu & Xinyu Zhao & Xinyan Zhang & Hong-Jie Peng & Ke Ye & Kun Jiang & Qiu Jiang & Jie Zeng & Tingting Zheng & Chuan Xia, 2024. "Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Yurou Celine Xiao & Siyu Sonia Sun & Yong Zhao & Rui Kai Miao & Mengyang Fan & Geonhui Lee & Yuanjun Chen & Christine M. Gabardo & Yan Yu & Chenyue Qiu & Zunmin Guo & Xinyue Wang & Panagiotis Papangel, 2024. "Reactive capture of CO2 via amino acid," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Jingwen Ke & Jiankang Zhao & Mingfang Chi & Menglin Wang & Xiangdong Kong & Qixuan Chang & Weiran Zhou & Chengxuan Long & Jie Zeng & Zhigang Geng, 2022. "Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Xiaodong Li & Li Li & Guangbo Chen & Xingyuan Chu & Xiaohui Liu & Chandrasekhar Naisa & Darius Pohl & Markus Löffler & Xinliang Feng, 2023. "Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49247-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.