IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i11d10.1038_s41560-019-0490-3.html
   My bibliography  Save this article

Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol

Author

Listed:
  • Yimin A. Wu

    (Center for Nanoscale Materials, Argonne National Laboratory
    University of Waterloo)

  • Ian McNulty

    (Center for Nanoscale Materials, Argonne National Laboratory)

  • Cong Liu

    (Chemical Sciences and Engineering Division, Argonne National Laboratory)

  • Kah Chun Lau

    (Materials Science Division, Argonne National Laboratory
    California State University)

  • Qi Liu

    (City University of Hong Kong)

  • Arvydas P. Paulikas

    (Materials Science Division, Argonne National Laboratory)

  • Cheng-Jun Sun

    (Advanced Photon Source, Argonne National Laboratory)

  • Zhonghou Cai

    (Advanced Photon Source, Argonne National Laboratory)

  • Jeffrey R. Guest

    (Center for Nanoscale Materials, Argonne National Laboratory)

  • Yang Ren

    (Advanced Photon Source, Argonne National Laboratory)

  • Vojislav Stamenkovic

    (Materials Science Division, Argonne National Laboratory)

  • Larry A. Curtiss

    (Materials Science Division, Argonne National Laboratory)

  • Yuzi Liu

    (Center for Nanoscale Materials, Argonne National Laboratory)

  • Tijana Rajh

    (Center for Nanoscale Materials, Argonne National Laboratory)

Abstract

Atomic-level understanding of the active sites and transformation mechanisms under realistic working conditions is a prerequisite for rational design of high-performance photocatalysts. Here, by using correlated scanning fluorescence X-ray microscopy and environmental transmission electron microscopy at atmospheric pressure, in operando, we directly observe that the (110) facet of a single Cu2O photocatalyst particle is photocatalytically active for CO2 reduction to methanol while the (100) facet is inert. The oxidation state of the active sites changes from Cu(i) towards Cu(ii) due to CO2 and H2O co-adsorption and changes back to Cu(i) after CO2 conversion under visible light illumination. The Cu2O photocatalyst oxidizes water as it reduces CO2. Concomitantly, the crystal lattice expands due to CO2 adsorption then reverts after CO2 conversion. The internal quantum yield for unassisted wireless photocatalytic reduction of CO2 to methanol using Cu2O crystals is ~72%.

Suggested Citation

  • Yimin A. Wu & Ian McNulty & Cong Liu & Kah Chun Lau & Qi Liu & Arvydas P. Paulikas & Cheng-Jun Sun & Zhonghou Cai & Jeffrey R. Guest & Yang Ren & Vojislav Stamenkovic & Larry A. Curtiss & Yuzi Liu & T, 2019. "Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol," Nature Energy, Nature, vol. 4(11), pages 957-968, November.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:11:d:10.1038_s41560-019-0490-3
    DOI: 10.1038/s41560-019-0490-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0490-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0490-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwen Ke & Jiankang Zhao & Mingfang Chi & Menglin Wang & Xiangdong Kong & Qixuan Chang & Weiran Zhou & Chengxuan Long & Jie Zeng & Zhigang Geng, 2022. "Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Jijia Xie & Xiyi Li & Jian Guo & Lei Luo & Juan J. Delgado & Natalia Martsinovich & Junwang Tang, 2023. "Highly selective oxidation of benzene to phenol with air at room temperature promoted by water," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Guifeng Ma & Olga A. Syzgantseva & Yan Huang & Dragos Stoian & Jie Zhang & Shuliang Yang & Wen Luo & Mengying Jiang & Shumu Li & Chunjun Chen & Maria A. Syzgantseva & Sen Yan & Ningyu Chen & Li Peng &, 2023. "A hydrophobic Cu/Cu2O sheet catalyst for selective electroreduction of CO to ethanol," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xiaodong Li & Li Li & Guangbo Chen & Xingyuan Chu & Xiaohui Liu & Chandrasekhar Naisa & Darius Pohl & Markus Löffler & Xinliang Feng, 2023. "Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Yuan-Sheng Xia & Meizhong Tang & Lei Zhang & Jiang Liu & Cheng Jiang & Guang-Kuo Gao & Long-Zhang Dong & Lan-Gui Xie & Ya-Qian Lan, 2022. "Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Jie Ding & Zhiming Wei & Fuhua Li & Jincheng Zhang & Qiao Zhang & Jing Zhou & Weijue Wang & Yuhang Liu & Zhen Zhang & Xiaozhi Su & Runze Yang & Wei Liu & Chenliang Su & Hong Bin Yang & Yanqiang Huang , 2023. "Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yangyang Zhang & Yanxu Chen & Xiaowen Wang & Yafei Feng & Zechuan Dai & Mingyu Cheng & Genqiang Zhang, 2024. "Low-coordinated copper facilitates the *CH2CO affinity at enhanced rectifying interface of Cu/Cu2O for efficient CO2-to-multicarbon alcohols conversion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:11:d:10.1038_s41560-019-0490-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.