IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12640.html
   My bibliography  Save this article

Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

Author

Listed:
  • Woosung Choi

    (Korea Advanced Institute of Science and Technology)

  • Kyungmin Min

    (Korea Advanced Institute of Science and Technology)

  • Chaehoon Kim

    (Korea Advanced Institute of Science and Technology)

  • Young Soo Ko

    (Kongju National University)

  • Jae Wan Jeon

    (Kongju National University)

  • Hwimin Seo

    (Center for Convergent Chemical Process, Korea Research Institute of Chemical Technology)

  • Yong-Ki Park

    (Center for Convergent Chemical Process, Korea Research Institute of Chemical Technology)

  • Minkee Choi

    (Korea Advanced Institute of Science and Technology)

Abstract

Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

Suggested Citation

  • Woosung Choi & Kyungmin Min & Chaehoon Kim & Young Soo Ko & Jae Wan Jeon & Hwimin Seo & Yong-Ki Park & Minkee Choi, 2016. "Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12640
    DOI: 10.1038/ncomms12640
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12640
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Sun & Xuehua Shen & Hao Wang & Feng Yan & Jiali Hua & Guanghuan Li & Zuotai Zhang, 2024. "Atom-level interaction design between amines and support for achieving efficient and stable CO2 capture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jung, Wonho & Park, Junhyung & Won, Wangyun & Lee, Kwang Soon, 2018. "Simulated moving bed adsorption process based on a polyethylenimine-silica sorbent for CO2 capture with sensible heat recovery," Energy, Elsevier, vol. 150(C), pages 950-964.
    3. Jung, Wonho & Lee, Kwang Soon, 2019. "Novel short-cut estimation method for the optimum total energy demand of solid sorbents in an adsorption-based CO2 capture process," Energy, Elsevier, vol. 180(C), pages 640-648.
    4. Yang, Chuanruo & Du, Zhilin & Jin, Junsu & Chen, Jian & Mi, Jianguo, 2020. "Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability," Applied Energy, Elsevier, vol. 260(C).
    5. Jung, Wonho & Lee, Jinwon, 2022. "Economic evaluation for four different solid sorbent processes with heat integration for energy-efficient CO2 capture based on PEI-silica sorbent," Energy, Elsevier, vol. 238(PC).
    6. Park, Junhyung & Won, Wangyun & Jung, Wonho & Lee, Kwang Soon, 2019. "One-dimensional modeling of a turbulent fluidized bed for a sorbent-based CO2 capture process with solid–solid sensible heat exchange," Energy, Elsevier, vol. 168(C), pages 1168-1180.
    7. Jung, Wonho & Lee, Jinwon, 2022. "Pseudo counter-current turbulent fluidized bed process with sensible heat recovery for energy-efficient CO2 capture using an amine-functionalized solid sorbent," Energy, Elsevier, vol. 240(C).
    8. An, Xuefei & Li, Tongxin & Chen, Jiaqi & Fu, Dong, 2023. "3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance," Energy, Elsevier, vol. 274(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.