IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027950.html
   My bibliography  Save this article

Multi-Cellular Logistics of Collective Cell Migration

Author

Listed:
  • Masataka Yamao
  • Honda Naoki
  • Shin Ishii

Abstract

During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

Suggested Citation

  • Masataka Yamao & Honda Naoki & Shin Ishii, 2011. "Multi-Cellular Logistics of Collective Cell Migration," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-11, December.
  • Handle: RePEc:plo:pone00:0027950
    DOI: 10.1371/journal.pone.0027950
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027950
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027950&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos Carmona-Fontaine & Helen K. Matthews & Sei Kuriyama & Mauricio Moreno & Graham A. Dunn & Maddy Parsons & Claudio D. Stern & Roberto Mayor, 2008. "Contact inhibition of locomotion in vivo controls neural crest directional migration," Nature, Nature, vol. 456(7224), pages 957-961, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. András Szabó & Eric Theveneau & Melissa Turan & Roberto Mayor, 2019. "Neural crest streaming as an emergent property of tissue interactions during morphogenesis," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    2. Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Aleksandr Vasilyev & Yan Liu & Nathan Hellman & Narendra Pathak & Iain A Drummond, 2012. "Mechanical Stretch and PI3K Signaling Link Cell Migration and Proliferation to Coordinate Epithelial Tubule Morphogenesis in the Zebrafish Pronephros," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
    4. Matthew A. Heinrich & Ricard Alert & Abraham E. Wolf & Andrej Košmrlj & Daniel J. Cohen, 2022. "Self-assembly of tessellated tissue sheets by expansion and collision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Christine Chiasson-MacKenzie & Jeremie Vitte & Ching-Hui Liu & Emily A. Wright & Elizabeth A. Flynn & Shannon L. Stott & Marco Giovannini & Andrea I. McClatchey, 2023. "Cellular mechanisms of heterogeneity in NF2-mutant schwannoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.