IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30867-7.html
   My bibliography  Save this article

A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics

Author

Listed:
  • Lei Xin

    (Bioinformatics Solutions Inc.)

  • Rui Qiao

    (Bioinformatics Solutions Inc.)

  • Xin Chen

    (Bioinformatics Solutions Inc.)

  • Hieu Tran

    (University of Waterloo)

  • Shengying Pan

    (Bioinformatics Solutions Inc.)

  • Sahar Rabinoviz

    (Bioinformatics Solutions Inc.)

  • Haibo Bian

    (Bioinformatics Solutions Inc.)

  • Xianliang He

    (Bioinformatics Solutions Inc.)

  • Brenton Morse

    (Bioinformatics Solutions Inc.)

  • Baozhen Shan

    (Bioinformatics Solutions Inc.)

  • Ming Li

    (University of Waterloo)

Abstract

Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics applications. Here we report a streamlined platform for both DDA and DIA data analysis. The platform integrates deep learning-based solutions of spectral library search, database search, and de novo sequencing under a unified framework, which not only boosts the sensitivity but also accurately controls the specificity of peptide identification. Our platform identifies 5-30% more peptide precursors than other state-of-the-art systems on multiple benchmark datasets. When evaluated on immunopeptidomics datasets, we identify 1.7-4.1 and 1.4-2.2 times more peptides from DDA and DIA data, respectively, than previously reported results. We also discover six T-cell epitopes from SARS-CoV-2 immunopeptidome that might represent potential targets for COVID-19 vaccine development. The platform supports data formats from all major instruments and is implemented with the distributed high-performance computing technology, allowing analysis of tera-scale datasets of thousands of samples for clinical applications.

Suggested Citation

  • Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30867-7
    DOI: 10.1038/s41467-022-30867-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30867-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30867-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian Meier & Niklas D. Köhler & Andreas-David Brunner & Jean-Marc H. Wanka & Eugenia Voytik & Maximilian T. Strauss & Fabian J. Theis & Matthias Mann, 2021. "Deep learning the collisional cross sections of the peptide universe from a million experimental values," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Michal Bassani-Sternberg & Eva Bräunlein & Richard Klar & Thomas Engleitner & Pavel Sinitcyn & Stefan Audehm & Melanie Straub & Julia Weber & Julia Slotta-Huspenina & Katja Specht & Marc E. Martignoni, 2016. "Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry," Nature Communications, Nature, vol. 7(1), pages 1-16, December.
    3. Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Ruedi Aebersold & Matthias Mann, 2003. "Mass spectrometry-based proteomics," Nature, Nature, vol. 422(6928), pages 198-207, March.
    5. Yue Xuan & Nicholas W. Bateman & Sebastien Gallien & Sandra Goetze & Yue Zhou & Pedro Navarro & Mo Hu & Niyati Parikh & Brian L. Hood & Kelly A. Conrads & Christina Loosse & Reta Birhanu Kitata & Sand, 2020. "Standardization and harmonization of distributed multi-center proteotype analysis supporting precision medicine studies," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Yang & Qun Fang, 2024. "Prediction of glycopeptide fragment mass spectra by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Kevin A. Kovalchik & David J. Hamelin & Peter Kubiniok & Benoîte Bourdin & Fatima Mostefai & Raphaël Poujol & Bastien Paré & Shawn M. Simpson & John Sidney & Éric Bonneil & Mathieu Courcelles & Sunil , 2024. "Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kevin L. Yang & Fengchao Yu & Guo Ci Teo & Kai Li & Vadim Demichev & Markus Ralser & Alexey I. Nesvizhskii, 2023. "MSBooster: improving peptide identification rates using deep learning-based features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Franziska Füchsl & Johannes Untch & Vladyslav Kavaka & Gabriela Zuleger & Sarah Braun & Antonia Schwanzer & Sebastian Jarosch & Carolin Vogelsang & Niklas Andrade Krätzig & Dario Gosmann & Rupert Ölli, 2024. "High-resolution profile of neoantigen-specific TCR activation links moderate stimulation to increased resilience of engineered TCR-T cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Yi Yang & Qun Fang, 2024. "Prediction of glycopeptide fragment mass spectra by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Kevin A. Kovalchik & David J. Hamelin & Peter Kubiniok & Benoîte Bourdin & Fatima Mostefai & Raphaël Poujol & Bastien Paré & Shawn M. Simpson & John Sidney & Éric Bonneil & Mathieu Courcelles & Sunil , 2024. "Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Charlotte Adams & Wassim Gabriel & Kris Laukens & Mario Picciani & Mathias Wilhelm & Wout Bittremieux & Kurt Boonen, 2024. "Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Weiping Sun & Qianqiu Zhang & Xiyue Zhang & Ngoc Hieu Tran & M. Ziaur Rahman & Zheng Chen & Chao Peng & Jun Ma & Ming Li & Lei Xin & Baozhen Shan, 2023. "Glycopeptide database search and de novo sequencing with PEAKS GlycanFinder enable highly sensitive glycoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Hanqing Liao & Carolina Barra & Zhicheng Zhou & Xu Peng & Isaac Woodhouse & Arun Tailor & Robert Parker & Alexia Carré & Persephone Borrow & Michael J. Hogan & Wayne Paes & Laurence C. Eisenlohr & Rob, 2024. "MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Naomi Hoenisch Gravel & Annika Nelde & Jens Bauer & Lena Mühlenbruch & Sarah M. Schroeder & Marian C. Neidert & Jonas Scheid & Steffen Lemke & Marissa L. Dubbelaar & Marcel Wacker & Anna Dengler & Rei, 2023. "TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Daniela Klaproth-Andrade & Johannes Hingerl & Yanik Bruns & Nicholas H. Smith & Jakob Träuble & Mathias Wilhelm & Julien Gagneur, 2024. "Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
    15. Naomi S Hachiya, 2017. "Unfoldin, A Novel Tool for the Analysis of Protein Misfolding or Neurodegenerative Diseases," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 6(3), pages 40-44, October.
    16. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    17. Dayle L Sampson & Tony J Parker & Zee Upton & Cameron P Hurst, 2011. "A Comparison of Methods for Classifying Clinical Samples Based on Proteomics Data: A Case Study for Statistical and Machine Learning Approaches," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    18. Jiang Tan & Hui-Zhen Fu & Yuh-Shan Ho, 2014. "A bibliometric analysis of research on proteomics in Science Citation Index Expanded," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1473-1490, February.
    19. Jacques Colinge & Keiryn L Bennett, 2007. "Introduction to Computational Proteomics," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-10, July.
    20. Guler, Arzu Tugce & Waaijer, Cathelijn J.F. & Mohammed, Yassene & Palmblad, Magnus, 2016. "Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services," Journal of Informetrics, Elsevier, vol. 10(3), pages 830-841.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30867-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.