Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-48322-0
Download full text from publisher
References listed on IDEAS
- Florian Meier & Niklas D. Köhler & Andreas-David Brunner & Jean-Marc H. Wanka & Eugenia Voytik & Maximilian T. Strauss & Fabian J. Theis & Matthias Mann, 2021. "Deep learning the collisional cross sections of the peptide universe from a million experimental values," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Chloe Chong & Markus Müller & HuiSong Pak & Dermot Harnett & Florian Huber & Delphine Grun & Marion Leleu & Aymeric Auger & Marion Arnaud & Brian J. Stevenson & Justine Michaux & Ilija Bilic & Antje H, 2020. "Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes," Nature Communications, Nature, vol. 11(1), pages 1-21, December.
- Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Brian C. Searle & Kristian E. Swearingen & Christopher A. Barnes & Tobias Schmidt & Siegfried Gessulat & Bernhard Küster & Mathias Wilhelm, 2020. "Generating high quality libraries for DIA MS with empirically corrected peptide predictions," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Kevin L. Yang & Fengchao Yu & Guo Ci Teo & Kai Li & Vadim Demichev & Markus Ralser & Alexey I. Nesvizhskii, 2023. "MSBooster: improving peptide identification rates using deep learning-based features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
- David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yi Yang & Qun Fang, 2024. "Prediction of glycopeptide fragment mass spectra by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Kevin L. Yang & Fengchao Yu & Guo Ci Teo & Kai Li & Vadim Demichev & Markus Ralser & Alexey I. Nesvizhskii, 2023. "MSBooster: improving peptide identification rates using deep learning-based features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Weiping Sun & Qianqiu Zhang & Xiyue Zhang & Ngoc Hieu Tran & M. Ziaur Rahman & Zheng Chen & Chao Peng & Jun Ma & Ming Li & Lei Xin & Baozhen Shan, 2023. "Glycopeptide database search and de novo sequencing with PEAKS GlycanFinder enable highly sensitive glycoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Hanqing Liao & Carolina Barra & Zhicheng Zhou & Xu Peng & Isaac Woodhouse & Arun Tailor & Robert Parker & Alexia Carré & Persephone Borrow & Michael J. Hogan & Wayne Paes & Laurence C. Eisenlohr & Rob, 2024. "MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Daniela Klaproth-Andrade & Johannes Hingerl & Yanik Bruns & Nicholas H. Smith & Jakob Träuble & Mathias Wilhelm & Julien Gagneur, 2024. "Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Humberto J. Ferreira & Brian J. Stevenson & HuiSong Pak & Fengchao Yu & Jessica Almeida Oliveira & Florian Huber & Marie Taillandier-Coindard & Justine Michaux & Emma Ricart-Altimiras & Anne I. Kraeme, 2024. "Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Fengchao Yu & Guo Ci Teo & Andy T. Kong & Klemens Fröhlich & Ginny Xiaohe Li & Vadim Demichev & Alexey I. Nesvizhskii, 2023. "Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Eduardo Vieira de Souza & Angie L. Bookout & Christopher A. Barnes & Brendan Miller & Pablo Machado & Luiz A. Basso & Cristiano V. Bizarro & Alan Saghatelian, 2024. "Rp3: Ribosome profiling-assisted proteogenomics improves coverage and confidence during microprotein discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Wojciech Barczak & Simon M. Carr & Geng Liu & Shonagh Munro & Annalisa Nicastri & Lian Ni Lee & Claire Hutchings & Nicola Ternette & Paul Klenerman & Alexander Kanapin & Anastasia Samsonova & Nicholas, 2023. "Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Wai Tuck Soh & Hanna P. Roetschke & John A. Cormican & Bei Fang Teo & Nyet Cheng Chiam & Monika Raabe & Ralf Pflanz & Fabian Henneberg & Stefan Becker & Ashwin Chari & Haiyan Liu & Henning Urlaub & Ju, 2024. "Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
- Georges Bedran & Daniel A. Polasky & Yi Hsiao & Fengchao Yu & Felipe Veiga Leprevost & Javier A. Alfaro & Marcin Cieslik & Alexey I. Nesvizhskii, 2023. "Unraveling the glycosylated immunopeptidome with HLA-Glyco," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Maximilian T. Strauss & Isabell Bludau & Wen-Feng Zeng & Eugenia Voytik & Constantin Ammar & Julia P. Schessner & Rajesh Ilango & Michelle Gill & Florian Meier & Sander Willems & Matthias Mann, 2024. "AlphaPept: a modern and open framework for MS-based proteomics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- Samuel Rivero-Hinojosa & Melanie Grant & Aswini Panigrahi & Huizhen Zhang & Veronika Caisova & Catherine M. Bollard & Brian R. Rood, 2021. "Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
- Naomi Hoenisch Gravel & Annika Nelde & Jens Bauer & Lena Mühlenbruch & Sarah M. Schroeder & Marian C. Neidert & Jonas Scheid & Steffen Lemke & Marissa L. Dubbelaar & Marcel Wacker & Anna Dengler & Rei, 2023. "TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48322-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.