IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24263-w.html
   My bibliography  Save this article

Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

Author

Listed:
  • Mathias Wilhelm

    (Technical University of Munich (TUM)
    Technical University of Munich (TUM))

  • Daniel P. Zolg

    (Technical University of Munich (TUM))

  • Michael Graber

    (Technical University of Munich (TUM))

  • Siegfried Gessulat

    (Technical University of Munich (TUM))

  • Tobias Schmidt

    (Technical University of Munich (TUM))

  • Karsten Schnatbaum

    (JPT Peptide Technologies GmbH)

  • Celina Schwencke-Westphal

    (Technical University of Munich (TUM)
    German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ)
    Technical University of Munich (TUM))

  • Philipp Seifert

    (Technical University of Munich (TUM)
    Technical University of Munich (TUM))

  • Niklas Andrade Krätzig

    (Technical University of Munich (TUM)
    Technical University of Munich (TUM)
    Technical University of Munich (TUM))

  • Johannes Zerweck

    (JPT Peptide Technologies GmbH)

  • Tobias Knaute

    (JPT Peptide Technologies GmbH)

  • Eva Bräunlein

    (Technical University of Munich (TUM)
    Technical University of Munich (TUM))

  • Patroklos Samaras

    (Technical University of Munich (TUM))

  • Ludwig Lautenbacher

    (Technical University of Munich (TUM))

  • Susan Klaeger

    (Broad Institute of MIT and Harvard)

  • Holger Wenschuh

    (JPT Peptide Technologies GmbH)

  • Roland Rad

    (Technical University of Munich (TUM)
    Technical University of Munich (TUM)
    Technical University of Munich (TUM))

  • Bernard Delanghe

    (Thermo Fisher Scientific)

  • Andreas Huhmer

    (Thermo Fisher Scientific)

  • Steven A. Carr

    (Broad Institute of MIT and Harvard)

  • Karl R. Clauser

    (Broad Institute of MIT and Harvard)

  • Angela M. Krackhardt

    (Technical University of Munich (TUM)
    German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ)
    Technical University of Munich (TUM))

  • Ulf Reimer

    (JPT Peptide Technologies GmbH)

  • Bernhard Kuster

    (Technical University of Munich (TUM)
    Technical University of Munich (TUM))

Abstract

No abstract is available for this item.

Suggested Citation

  • Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24263-w
    DOI: 10.1038/s41467-021-24263-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24263-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24263-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanqing Liao & Carolina Barra & Zhicheng Zhou & Xu Peng & Isaac Woodhouse & Arun Tailor & Robert Parker & Alexia Carré & Persephone Borrow & Michael J. Hogan & Wayne Paes & Laurence C. Eisenlohr & Rob, 2024. "MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Yi Yang & Qun Fang, 2024. "Prediction of glycopeptide fragment mass spectra by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Kevin A. Kovalchik & David J. Hamelin & Peter Kubiniok & Benoîte Bourdin & Fatima Mostefai & Raphaël Poujol & Bastien Paré & Shawn M. Simpson & John Sidney & Éric Bonneil & Mathieu Courcelles & Sunil , 2024. "Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Franziska Füchsl & Johannes Untch & Vladyslav Kavaka & Gabriela Zuleger & Sarah Braun & Antonia Schwanzer & Sebastian Jarosch & Carolin Vogelsang & Niklas Andrade Krätzig & Dario Gosmann & Rupert Ölli, 2024. "High-resolution profile of neoantigen-specific TCR activation links moderate stimulation to increased resilience of engineered TCR-T cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Charlotte Adams & Wassim Gabriel & Kris Laukens & Mario Picciani & Mathias Wilhelm & Wout Bittremieux & Kurt Boonen, 2024. "Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Kevin L. Yang & Fengchao Yu & Guo Ci Teo & Kai Li & Vadim Demichev & Markus Ralser & Alexey I. Nesvizhskii, 2023. "MSBooster: improving peptide identification rates using deep learning-based features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Daniela Klaproth-Andrade & Johannes Hingerl & Yanik Bruns & Nicholas H. Smith & Jakob Träuble & Mathias Wilhelm & Julien Gagneur, 2024. "Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Weiping Sun & Qianqiu Zhang & Xiyue Zhang & Ngoc Hieu Tran & M. Ziaur Rahman & Zheng Chen & Chao Peng & Jun Ma & Ming Li & Lei Xin & Baozhen Shan, 2023. "Glycopeptide database search and de novo sequencing with PEAKS GlycanFinder enable highly sensitive glycoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24263-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.