IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48562-0.html
   My bibliography  Save this article

Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment

Author

Listed:
  • Timothy A. Daugird

    (University of North Carolina at Chapel Hill)

  • Yu Shi

    (North Carolina State University)

  • Katie L. Holland

    (Howard Hughes Medical Institute)

  • Hosein Rostamian

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill)

  • Zhe Liu

    (Howard Hughes Medical Institute)

  • Luke D. Lavis

    (Howard Hughes Medical Institute)

  • Joseph Rodriguez

    (National Institute of Environmental Health Sciences)

  • Brian D. Strahl

    (University of North Carolina at Chapel Hill
    University of North Carolina at Chapel Hill)

  • Wesley R. Legant

    (University of North Carolina at Chapel Hill
    North Carolina State University)

Abstract

In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.

Suggested Citation

  • Timothy A. Daugird & Yu Shi & Katie L. Holland & Hosein Rostamian & Zhe Liu & Luke D. Lavis & Joseph Rodriguez & Brian D. Strahl & Wesley R. Legant, 2024. "Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48562-0
    DOI: 10.1038/s41467-024-48562-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48562-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48562-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karolin Luger & Armin W. Mäder & Robin K. Richmond & David F. Sargent & Timothy J. Richmond, 1997. "Crystal structure of the nucleosome core particle at 2.8 Å resolution," Nature, Nature, vol. 389(6648), pages 251-260, September.
    2. Jesse R. Dixon & Inkyung Jung & Siddarth Selvaraj & Yin Shen & Jessica E. Antosiewicz-Bourget & Ah Young Lee & Zhen Ye & Audrey Kim & Nisha Rajagopal & Wei Xie & Yarui Diao & Jing Liang & Huimin Zhao , 2015. "Chromatin architecture reorganization during stem cell differentiation," Nature, Nature, vol. 518(7539), pages 331-336, February.
    3. Suhn Kyong Rhie & Andrew A. Perez & Fides D. Lay & Shannon Schreiner & Jiani Shi & Jenevieve Polin & Peggy J. Farnham, 2019. "A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Jianquan Xu & Hongqiang Ma & Hongbin Ma & Wei Jiang & Christopher A. Mela & Meihan Duan & Shimei Zhao & Chenxi Gao & Eun-Ryeong Hahm & Santana M. Lardo & Kris Troy & Ming Sun & Reet Pai & Donna B. Sto, 2020. "Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    5. Hiroaki Ohishi & Seiru Shimada & Satoshi Uchino & Jieru Li & Yuko Sato & Manabu Shintani & Hitoshi Owada & Yasuyuki Ohkawa & Alexandros Pertsinidis & Takashi Yamamoto & Hiroshi Kimura & Hiroshi Ochiai, 2022. "STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Lars Guelen & Ludo Pagie & Emilie Brasset & Wouter Meuleman & Marius B. Faza & Wendy Talhout & Bert H. Eussen & Annelies de Klein & Lodewyk Wessels & Wouter de Laat & Bas van Steensel, 2008. "Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions," Nature, Nature, vol. 453(7197), pages 948-951, June.
    7. Matteo Mazzocca & Alessia Loffreda & Emanuele Colombo & Tom Fillot & Daniela Gnani & Paola Falletta & Emanuele Monteleone & Serena Capozi & Edouard Bertrand & Gaelle Legube & Zeno Lavagnino & Carlo Ta, 2023. "Chromatin organization drives the search mechanism of nuclear factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Yu Shi & Timothy A. Daugird & Wesley R. Legant, 2022. "A quantitative analysis of various patterns applied in lattice light sheet microscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Marion Cremer & Katharina Brandstetter & Andreas Maiser & Suhas S. P. Rao & Volker J. Schmid & Miguel Guirao-Ortiz & Namita Mitra & Stefania Mamberti & Kyle N. Klein & David M. Gilbert & Heinrich Leon, 2020. "Cohesin depleted cells rebuild functional nuclear compartments after endomitosis," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    10. Guang Shi & Lei Liu & Changbong Hyeon & D. Thirumalai, 2018. "Interphase human chromosome exhibits out of equilibrium glassy dynamics," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattia Conte & Ehsan Irani & Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Mario Nicodemi, 2022. "Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Kaela M. Varberg & Esteban M. Dominguez & Boryana Koseva & Joseph M. Varberg & Ross P. McNally & Ayelen Moreno-Irusta & Emily R. Wesley & Khursheed Iqbal & Warren A. Cheung & Carl Schwendinger-Schreck, 2023. "Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Namrata Kumar & Arjan F. Theil & Vera Roginskaya & Yasmin Ali & Michael Calderon & Simon C. Watkins & Ryan P. Barnes & Patricia L. Opresko & Alex Pines & Hannes Lans & Wim Vermeulen & Bennett Houten, 2022. "Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Cristiana Bersaglieri & Jelena Kresoja-Rakic & Shivani Gupta & Dominik Bär & Rostyslav Kuzyakiv & Martina Panatta & Raffaella Santoro, 2022. "Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yi Li & James Lee & Lu Bai, 2024. "DNA methylation-based high-resolution mapping of long-distance chromosomal interactions in nucleosome-depleted regions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Wilfried Engl & Aliz Kunstar-Thomas & Siyi Chen & Woei Shyuan Ng & Hendrik Sielaff & Ziqing Winston Zhao, 2024. "Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Andrea Fontana & Francesca Vercellone & Mattia Conte & Mario Nicodemi, 2024. "Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Peter Henneman & Arjan Bouman & Adri Mul & Lia Knegt & Anne-Marie van der Kevie-Kersemaekers & Nitash Zwaveling-Soonawala & Hanne E J Meijers-Heijboer & A S Paul van Trotsenburg & Marcel M Mannens, 2018. "Widespread domain-like perturbations of DNA methylation in whole blood of Down syndrome neonates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-19, March.
    10. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Fritz Nagae & Yasuto Murayama & Tsuyoshi Terakawa, 2024. "Molecular mechanism of parental H3/H4 recycling at a replication fork," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Frederic Li Mow Chee & Bruno Beernaert & Billie G. C. Griffith & Alexander E. P. Loftus & Yatendra Kumar & Jimi C. Wills & Martin Lee & Jessica Valli & Ann P. Wheeler & J. Douglas Armstrong & Maddy Pa, 2023. "Mena regulates nesprin-2 to control actin–nuclear lamina associations, trans-nuclear membrane signalling and gene expression," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Abhijit Chakraborty & Jeffrey G. Wang & Ferhat Ay, 2022. "dcHiC detects differential compartments across multiple Hi-C datasets," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    19. Zhen Hou & Frank Nightingale & Yanan Zhu & Craig MacGregor-Chatwin & Peijun Zhang, 2023. "Structure of native chromatin fibres revealed by Cryo-ET in situ," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Marko Dunjić & Felix Jonas & Gilad Yaakov & Roye More & Yoav Mayshar & Yoach Rais & Ayelet-Hashahar Orenbuch & Saifeng Cheng & Naama Barkai & Yonatan Stelzer, 2023. "Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48562-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.