IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32341-w.html
   My bibliography  Save this article

A quantitative analysis of various patterns applied in lattice light sheet microscopy

Author

Listed:
  • Yu Shi

    (University of North Carolina at Chapel Hill, North Carolina State University)

  • Timothy A. Daugird

    (University of North Carolina at Chapel Hill)

  • Wesley R. Legant

    (University of North Carolina at Chapel Hill, North Carolina State University
    University of North Carolina at Chapel Hill)

Abstract

Light sheet microscopes reduce phototoxicity and background and improve imaging speed compared to widefield and confocal microscopes. However, when equipped with Gaussian beams, the axial resolving power of a light sheet microscope and the observable field of view are inversely related. Light sheets based on dithered optical lattices improve axial resolution and beam uniformity compared Gaussian beams by using axially structured illumination patterns. However, these advantages come at the expense of an increased total illumination to the specimen and a decreased axial confinement of the illumination pattern. Using simulations and experimental measurements in fixed and live cells, we quantify the differences between Gaussian and lattice light sheets on beam uniformity, axial resolution, lateral resolution, and photobleaching. We demonstrate how different optical lattice illumination patterns can be tuned to prioritize either axial resolution or optical sectioning. Finally, we introduce an approach to spectrally fuse sequential acquisitions of different lattice light sheet patterns with complementary optical properties to achieve both high resolution and low background images.

Suggested Citation

  • Yu Shi & Timothy A. Daugird & Wesley R. Legant, 2022. "A quantitative analysis of various patterns applied in lattice light sheet microscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32341-w
    DOI: 10.1038/s41467-022-32341-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32341-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32341-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy A. Daugird & Yu Shi & Katie L. Holland & Hosein Rostamian & Zhe Liu & Luke D. Lavis & Joseph Rodriguez & Brian D. Strahl & Wesley R. Legant, 2024. "Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32341-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.