IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12079-8.html
   My bibliography  Save this article

A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome

Author

Listed:
  • Suhn Kyong Rhie

    (University of Southern California)

  • Andrew A. Perez

    (University of Southern California)

  • Fides D. Lay

    (University of Southern California)

  • Shannon Schreiner

    (University of Southern California)

  • Jiani Shi

    (University of Southern California)

  • Jenevieve Polin

    (University of Southern California)

  • Peggy J. Farnham

    (University of Southern California)

Abstract

To better understand the impact of chromatin structure on regulation of the prostate cancer transcriptome, we develop high-resolution chromatin interaction maps in normal and prostate cancer cells using in situ Hi-C. By combining the in situ Hi-C data with active and repressive histone marks, CTCF binding sites, nucleosome-depleted regions, and transcriptome profiling, we identify topologically associating domains (TADs) that change in size and epigenetic states between normal and prostate cancer cells. Moreover, we identify normal and prostate cancer-specific enhancer-promoter loops and involved transcription factors. For example, we show that FOXA1 is enriched in prostate cancer-specific enhancer-promoter loop anchors. We also find that the chromatin structure surrounding the androgen receptor (AR) locus is altered in the prostate cancer cells with many cancer-specific enhancer-promoter loops. This creation of 3D epigenomic maps enables a better understanding of prostate cancer biology and mechanisms of gene regulation.

Suggested Citation

  • Suhn Kyong Rhie & Andrew A. Perez & Fides D. Lay & Shannon Schreiner & Jiani Shi & Jenevieve Polin & Peggy J. Farnham, 2019. "A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12079-8
    DOI: 10.1038/s41467-019-12079-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12079-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12079-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Okonechnikov & Aylin Camgöz & Owen Chapman & Sameena Wani & Donglim Esther Park & Jens-Martin Hübner & Abhijit Chakraborty & Meghana Pagadala & Rosalind Bump & Sahaana Chandran & Katerina K, 2023. "3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Timothy A. Daugird & Yu Shi & Katie L. Holland & Hosein Rostamian & Zhe Liu & Luke D. Lavis & Joseph Rodriguez & Brian D. Strahl & Wesley R. Legant, 2024. "Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12079-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.