IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7938-d595318.html
   My bibliography  Save this article

A Crash Injury Model Involving Autonomous Vehicle: Investigating of Crash and Disengagement Reports

Author

Listed:
  • Amolika Sinha

    (Research Centre for Integrated Transport Innovation (rCITI), School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia)

  • Vincent Vu

    (Research Centre for Integrated Transport Innovation (rCITI), School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia)

  • Sai Chand

    (Research Centre for Integrated Transport Innovation (rCITI), School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia)

  • Kasun Wijayaratna

    (School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia)

  • Vinayak Dixit

    (Research Centre for Integrated Transport Innovation (rCITI), School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
    IAG of Risk in Smart Cities, UNSW Sydney, Sydney, NSW 2052, Australia)

Abstract

Autonomous vehicles (AVs) are being extensively tested on public roads in several states in the USA, such as California, Florida, Nevada, and Texas. AV utilization is expected to increase into the future, given rapid advancement and development in sensing and navigation technologies. This will eventually lead to a decline in human driving. AVs are generally believed to mitigate crash frequency, although the repercussion of AVs on crash severity is ambiguous. For the data-driven and transparent deployment of AVs in California, the California Department of Motor Vehicles (CA DMV) commissioned AV manufacturers to draft and publish reports on disengagements and crashes. This study performed a comprehensive assessment of CA DMV data from 2014 to 2019 from a safety standpoint, and some trends were discerned. The results show that decrement in automated disengagements does not necessarily imply an improvement in AV technology. Contributing factors to the crash severity of an AV are not clearly defined. To further understand crash severity in AVs, the features and issues with data are identified and discussed using different machine learning techniques. The CA DMV accident report data were utilized to develop a variety of crash AV severity models focusing on the injury for all crash typologies. Performance metrics were discussed, and the bagging classifier model exhibited the best performance among different candidate models. Additionally, the study identified potential issues with the CA DMV data reporting protocol, which is imperative to share with the research community. Recommendations are provided to enhance the existing reports and append new domains.

Suggested Citation

  • Amolika Sinha & Vincent Vu & Sai Chand & Kasun Wijayaratna & Vinayak Dixit, 2021. "A Crash Injury Model Involving Autonomous Vehicle: Investigating of Crash and Disengagement Reports," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7938-:d:595318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Vinayak V Dixit & Sai Chand & Divya J Nair, 2016. "Autonomous Vehicles: Disengagements, Accidents and Reaction Times," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    3. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Abdel-Aty & Shengxuan Ding, 2024. "A matched case-control analysis of autonomous vs human-driven vehicle accidents," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "A systematic literature review of the factors influencing the adoption of autonomous driving," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1065-1082, December.
    2. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    3. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Bo Zou & Pooria Choobchian & Julie Rozenberg, 2021. "Cyber resilience of autonomous mobility systems: cyber-attacks and resilience-enhancing strategies," Journal of Transportation Security, Springer, vol. 14(3), pages 137-155, December.
    5. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    6. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    7. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    8. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    9. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    11. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    12. Daniel R Jeske, 2018. "Metrics Used When Evaluating the Performance of Statistical Classifiers," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 7-9, August.
    13. Charles David A. Icasiano & Araz Taeihagh, 2021. "Governance of the Risks of Ridesharing in Southeast Asia: An In-Depth Analysis," Sustainability, MDPI, vol. 13(11), pages 1-32, June.
    14. Juliet Chebet Moso & Stéphane Cormier & Cyril de Runz & Hacène Fouchal & John Mwangi Wandeto, 2021. "Anomaly Detection on Data Streams for Smart Agriculture," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    15. Inga Ulnicane & William Knight & Tonii Leach & Bernd Carsten Stahl & Winter-Gladys Wanjiku, 2021. "Framing governance for a contested emerging technology:insights from AI policy [The next space race is Artificial Intelligence]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 158-177.
    16. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    17. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    18. Robert A. Blair & Nicholas Sambanis, 2021. "Is Theory Useful for Conflict Prediction? A Response to Beger, Morgan, and Ward," Journal of Conflict Resolution, Peace Science Society (International), vol. 65(7-8), pages 1427-1453, August.
    19. Mieke Deschepper & Willem Waegeman & Dirk Vogelaers & Kristof Eeckloo, 2020. "Using structured pathology data to predict hospital-wide mortality at admission," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
    20. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7938-:d:595318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.