IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48401-2.html
   My bibliography  Save this article

Wide range of possible trajectories of North Atlantic climate in a warming world

Author

Listed:
  • Qinxue Gu

    (The Pennsylvania State University)

  • Melissa Gervais

    (The Pennsylvania State University
    The Pennsylvania State University)

  • Gokhan Danabasoglu

    (National Science Foundation National Center for Atmospheric Research)

  • Who M. Kim

    (National Science Foundation National Center for Atmospheric Research)

  • Frederic Castruccio

    (National Science Foundation National Center for Atmospheric Research)

  • Elizabeth Maroon

    (University of Wisconsin-Madison)

  • Shang-Ping Xie

    (University of California San Diego)

Abstract

Decadal variability in the North Atlantic Ocean impacts regional and global climate, yet changes in internal decadal variability under anthropogenic radiative forcing remain largely unexplored. Here we use the Community Earth System Model 2 Large Ensemble under historical and the Shared Socioeconomic Pathway 3-7.0 future radiative forcing scenarios and show that the ensemble spread in northern North Atlantic sea surface temperature (SST) more than doubles during the mid-twenty-first century, highlighting an exceptionally wide range of possible climate states. Furthermore, there are strikingly distinct trajectories in these SSTs, arising from differences in the North Atlantic deep convection among ensemble members starting by 2030. We propose that these are stochastically triggered and subsequently amplified by positive feedbacks involving coupled ocean-atmosphere-sea ice interactions. Freshwater forcing associated with global warming seems necessary for activating these feedbacks, accentuating the impact of external forcing on internal variability. Further investigation on seven additional large ensembles affirms the robustness of our findings. By monitoring these mechanisms in real time and extending dynamical model predictions after positive feedbacks activate, we may achieve skillful long-lead North Atlantic decadal predictions that are effective for multiple decades.

Suggested Citation

  • Qinxue Gu & Melissa Gervais & Gokhan Danabasoglu & Who M. Kim & Frederic Castruccio & Elizabeth Maroon & Shang-Ping Xie, 2024. "Wide range of possible trajectories of North Atlantic climate in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48401-2
    DOI: 10.1038/s41467-024-48401-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48401-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48401-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Kosaka & Shang-Ping Xie, 2013. "Recent global-warming hiatus tied to equatorial Pacific surface cooling," Nature, Nature, vol. 501(7467), pages 403-407, September.
    2. Stefan Rahmstorf & Jason E. Box & Georg Feulner & Michael E. Mann & Alexander Robinson & Scott Rutherford & Erik J. Schaffernicht, 2015. "Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation," Nature Climate Change, Nature, vol. 5(5), pages 475-480, May.
    3. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(4), pages 277-286, April.
    4. Yochanan Kushnir & Adam A. Scaife & Raymond Arritt & Gianpaolo Balsamo & George Boer & Francisco Doblas-Reyes & Ed Hawkins & Masahide Kimoto & Rupa Kumar Kolli & Arun Kumar & Daniela Matei & Katja Mat, 2019. "Towards operational predictions of the near-term climate," Nature Climate Change, Nature, vol. 9(2), pages 94-101, February.
    5. Katinka Bellomo & Michela Angeloni & Susanna Corti & Jost von Hardenberg, 2021. "Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Paul Keil & Thorsten Mauritsen & Johann Jungclaus & Christopher Hedemann & Dirk Olonscheck & Rohit Ghosh, 2020. "Multiple drivers of the North Atlantic warming hole," Nature Climate Change, Nature, vol. 10(7), pages 667-671, July.
    7. Florian Sévellec & Alexey V. Fedorov & Wei Liu, 2017. "Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 7(8), pages 604-610, August.
    8. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(8), pages 791-791, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Grasiele Romanzini-Bezerra & Amanda C. Maycock, 2024. "Projected rapid response of stratospheric temperature to stringent climate mitigation," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    4. Shijie Zhou & Ping Huang & Lin Wang & Kaiming Hu & Gang Huang & Peng Hu, 2024. "Robust changes in global subtropical circulation under greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Jisesh Sethunadh & F. W. Letson & R. J. Barthelmie & S. C. Pryor, 2023. "Assessing the impact of global warming on windstorms in the northeastern United States using the pseudo-global-warming method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2807-2834, July.
    9. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. B. H. Samset & C. Zhou & J. S. Fuglestvedt & M. T. Lund & J. Marotzke & M. D. Zelinka, 2022. "Earlier emergence of a temperature response to mitigation by filtering annual variability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Nico, Gianluigi & Azzarri, Carlo, 2022. "Weather variability and extreme shocks in Africa: Are female or male farmers more affected?," IFPRI discussion papers 2115, International Food Policy Research Institute (IFPRI).
    14. Dirk Olonscheck & Andrew P. Schurer & Lucie Lücke & Gabriele C. Hegerl, 2021. "Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Fukai Liu & Xun Li & Yiyong Luo & Wenju Cai & Jian Lu & Xiao-Tong Zheng & Sarah M. Kang & Hai Wang & Lei Zhou, 2024. "Increased Asian aerosols drive a slowdown of Atlantic Meridional Overturning Circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Karen A. McKinnon, 2022. "Discussion on “A combined estimate of global temperature”," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    18. Yiqun Tian & Shineng Hu & Clara Deser, 2023. "Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48401-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.