IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v7y2017i8d10.1038_nclimate3353.html
   My bibliography  Save this article

Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation

Author

Listed:
  • Florian Sévellec

    (Ocean and Earth Science, University of Southampton)

  • Alexey V. Fedorov

    (Yale University)

  • Wei Liu

    (Yale University)

Abstract

The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study, we use an optimal flux perturbation framework and comprehensive climate model simulations to estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally to sea-ice decline. It is found that on decadal timescales, flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC, while on multi-decadal timescales (longer than 20 years), flux anomalies in the Arctic become more important. These positive buoyancy anomalies spread to the North Atlantic, weakening the AMOC and its poleward heat transport. Therefore, the Arctic sea-ice decline may explain the suggested slow-down of the AMOC and the ‘Warming Hole’ persisting in the subpolar North Atlantic.

Suggested Citation

  • Florian Sévellec & Alexey V. Fedorov & Wei Liu, 2017. "Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 7(8), pages 604-610, August.
  • Handle: RePEc:nat:natcli:v:7:y:2017:i:8:d:10.1038_nclimate3353
    DOI: 10.1038/nclimate3353
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3353
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiechun Deng & Aiguo Dai, 2022. "Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Beatriz Arellano-Nava & Paul R. Halloran & Chris A. Boulton & James Scourse & Paul G. Butler & David J. Reynolds & Timothy M. Lenton, 2022. "Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Qinwang Xing & Haiqing Yu & Hui Wang, 2024. "Global mapping and evolution of persistent fronts in Large Marine Ecosystems over the past 40 years," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Qinxue Gu & Melissa Gervais & Gokhan Danabasoglu & Who M. Kim & Frederic Castruccio & Elizabeth Maroon & Shang-Ping Xie, 2024. "Wide range of possible trajectories of North Atlantic climate in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Jun Meng & Jingfang Fan & Uma S. Bhatt & Jürgen Kurths, 2023. "Arctic weather variability and connectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Fukai Liu & Xun Li & Yiyong Luo & Wenju Cai & Jian Lu & Xiao-Tong Zheng & Sarah M. Kang & Hai Wang & Lei Zhou, 2024. "Increased Asian aerosols drive a slowdown of Atlantic Meridional Overturning Circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:8:d:10.1038_nclimate3353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.