IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48388-w.html
   My bibliography  Save this article

Non-linear relationships between daily temperature extremes and US agricultural yields uncovered by global gridded meteorological datasets

Author

Listed:
  • Dylan Hogan

    (Columbia University School of International and Public Affairs)

  • Wolfram Schlenker

    (NBER and CEPR)

Abstract

Global agricultural commodity markets are highly integrated among major producers. Prices are driven by aggregate supply rather than what happens in individual countries in isolation. Estimating the effects of weather-induced shocks on production, trade patterns and prices hence requires a globally representative weather data set. Recently, two data sets that provide daily or hourly records, GMFD and ERA5-Land, became available. Starting with the US, a data rich region, we formally test whether these global data sets are as good as more fine-scaled country-specific data in explaining yields and whether they estimate similar response functions. While GMFD and ERA5-Land have lower predictive skill for US corn and soybeans yields than the fine-scaled PRISM data, they still correctly uncover the underlying non-linear temperature relationship. All specifications using daily temperature extremes under any of the weather data sets outperform models that use a quadratic in average temperature. Correctly capturing the effect of daily extremes has a larger effect than the choice of weather data. In a second step, focusing on Sub Saharan Africa, a data sparse region, we confirm that GMFD and ERA5-Land have superior predictive power to CRU, a global weather data set previously employed for modeling climate effects in the region.

Suggested Citation

  • Dylan Hogan & Wolfram Schlenker, 2024. "Non-linear relationships between daily temperature extremes and US agricultural yields uncovered by global gridded meteorological datasets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48388-w
    DOI: 10.1038/s41467-024-48388-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48388-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48388-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ethan E. Butler & Peter Huybers, 2013. "Reply to 'US maize adaptability'," Nature Climate Change, Nature, vol. 3(8), pages 691-692, August.
    2. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    3. Li, Man, 2023. "Adaptation to expected and unexpected weather fluctuations: Evidence from Bangladeshi smallholder farmers," World Development, Elsevier, vol. 161(C).
    4. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    5. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    6. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2022. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits [Distributive Politics and Economic Growth]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(4), pages 2037-2105.
    7. David Wuepper & Haoyu Wang & Wolfram Schlenker & Meha Jain & Robert Finger, 2023. "Institutions and Global Crop Yields," NBER Working Papers 31426, National Bureau of Economic Research, Inc.
    8. Ethan E. Butler & Peter Huybers, 2013. "Adaptation of US maize to temperature variations," Nature Climate Change, Nature, vol. 3(1), pages 68-72, January.
    9. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    10. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    11. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    12. Jonathan I. Dingel & Kyle C. Meng & Solomon M. Hsiang, 2019. "Spatial Correlation, Trade, and Inequality: Evidence from the Global Climate," NBER Working Papers 25447, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhaskar Jyoti Neog, 2022. "Temperature shocks and rural labour markets: evidence from India," Climatic Change, Springer, vol. 171(1), pages 1-20, March.
    2. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    3. Colelli, Francesco Pietro & Wing, Ian Sue & De Cian, Enrica, 2023. "Intensive and extensive margins of the peak load: Measuring adaptation with mixed frequency panel data," Energy Economics, Elsevier, vol. 126(C).
    4. Lis-Castiblanco, Catherine & Jordi, Louis, 2024. "Adaptation to Frost and Heat Risks in French Viticulture: Are Grape Growers Dumb Farmers?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343569, Agricultural and Applied Economics Association.
    5. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    6. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    7. Le, Hanh-My & Ludwig, Markus, 2022. "The Salinization of Agricultural Hubs: Impacts and Adjustments to Intensifying Saltwater Intrusion in the Mekong Delta," VfS Annual Conference 2022 (Basel): Big Data in Economics 264102, Verein für Socialpolitik / German Economic Association.
    8. Bento, Antonio M. & Miller, Noah & Mookerjee, Mehreen & Severnini, Edson, 2023. "A unifying approach to measuring climate change impacts and adaptation," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    9. Zappalà, Guglielmo, 2024. "Adapting to climate change accounting for individual beliefs," Journal of Development Economics, Elsevier, vol. 169(C).
    10. Aatishya Mohanty & Nattavudh Powdthavee & Cheng Keat Tang & Andrew J. Oswald, 2024. "Temperature Variability and Natural Disasters," Papers 2409.14936, arXiv.org.
    11. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    12. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    13. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    14. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    15. Noah Miller & Jesse Tack & Jason Bergtold, 2021. "The Impacts of Warming Temperatures on US Sorghum Yields and the Potential for Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1742-1758, October.
    16. Themann, Michael, 2021. "At boiling point: Temperature shocks in global business groups," Ruhr Economic Papers 905, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    18. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    19. Desbureaux, Sébastien & Rodella, Aude-Sophie, 2019. "Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas," World Development, Elsevier, vol. 114(C), pages 13-27.
    20. Zhiqiang Cheng & Jinyang Cai, 2024. "How do climate anomalies affect the duration of land transfers? Evidence from China," Climatic Change, Springer, vol. 177(10), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48388-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.