IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48218-z.html
   My bibliography  Save this article

Atomic-level polarization reversal in sliding ferroelectric semiconductors

Author

Listed:
  • Fengrui Sui

    (East China Normal University)

  • Haoyang Li

    (East China Normal University)

  • Ruijuan Qi

    (East China Normal University
    Chinese Academy of Sciences)

  • Min Jin

    (Shanghai Dianji University)

  • Zhiwei Lv

    (East China Normal University)

  • Menghao Wu

    (Huazhong University of Science and Technology)

  • Xuechao Liu

    (Chinese Academy of Sciences)

  • Yufan Zheng

    (East China Normal University)

  • Beituo Liu

    (East China Normal University)

  • Rui Ge

    (East China Normal University)

  • Yu-Ning Wu

    (East China Normal University)

  • Rong Huang

    (East China Normal University)

  • Fangyu Yue

    (East China Normal University
    Shanxi University
    East China Normal University)

  • Junhao Chu

    (East China Normal University
    Shanghai Institute of Technical Physics)

  • Chungang Duan

    (East China Normal University
    Shanxi University
    East China Normal University)

Abstract

Intriguing “slidetronics” has been reported in van der Waals (vdW) layered non-centrosymmetric materials and newly-emerging artificially-tuned twisted moiré superlattices, but correlative experiments that spatially track the interlayer sliding dynamics at atomic-level remain elusive. Here, we address the decisive challenge to in-situ trace the atomic-level interlayer sliding and the induced polarization reversal in vdW-layered yttrium-doped γ-InSe, step by step and atom by atom. We directly observe the real-time interlayer sliding by a 1/3-unit cell along the armchair direction, corresponding to vertical polarization reversal. The sliding driven only by low energetic electron-beam illumination suggests rather low switching barriers. Additionally, we propose a new sliding mechanism that supports the observed reversal pathway, i.e., two bilayer units slide towards each other simultaneously. Our insights into the polarization reversal via the atomic-scale interlayer sliding provide a momentous initial progress for the ongoing and future research on sliding ferroelectrics towards non-volatile storages or ferroelectric field-effect transistors.

Suggested Citation

  • Fengrui Sui & Haoyang Li & Ruijuan Qi & Min Jin & Zhiwei Lv & Menghao Wu & Xuechao Liu & Yufan Zheng & Beituo Liu & Rui Ge & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu & Chungang Duan, 2024. "Atomic-level polarization reversal in sliding ferroelectric semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48218-z
    DOI: 10.1038/s41467-024-48218-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48218-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48218-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenhui Li & Xuanlin Zhang & Jia Yang & Song Zhou & Chuangye Song & Peng Cheng & Yi-Qi Zhang & Baojie Feng & Zhenxing Wang & Yunhao Lu & Kehui Wu & Lan Chen, 2023. "Emergence of ferroelectricity in a nonferroelectric monolayer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Peng Meng & Yaze Wu & Renji Bian & Er Pan & Biao Dong & Xiaoxu Zhao & Jiangang Chen & Lishu Wu & Yuqi Sun & Qundong Fu & Qing Liu & Dong Shi & Qi Zhang & Yong-Wei Zhang & Zheng Liu & Fucai Liu, 2022. "Sliding induced multiple polarization states in two-dimensional ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zhiren Zheng & Qiong Ma & Zhen Bi & Sergio Barrera & Ming-Hao Liu & Nannan Mao & Yang Zhang & Natasha Kiper & Kenji Watanabe & Takashi Taniguchi & Jing Kong & William A. Tisdale & Ray Ashoori & Nuh Ge, 2020. "Unconventional ferroelectricity in moiré heterostructures," Nature, Nature, vol. 588(7836), pages 71-76, December.
    4. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Swarup Deb & Wei Cao & Noam Raab & Kenji Watanabe & Takashi Taniguchi & Moshe Goldstein & Leeor Kronik & Michael Urbakh & Oded Hod & Moshe Ben Shalom, 2022. "Cumulative polarization in conductive interfacial ferroelectrics," Nature, Nature, vol. 612(7940), pages 465-469, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swarup Deb & Johannes Krause & Paulo E. Faria Junior & Michael Andreas Kempf & Rico Schwartz & Kenji Watanabe & Takashi Taniguchi & Jaroslav Fabian & Tobias Korn, 2024. "Excitonic signatures of ferroelectric order in parallel-stacked MoS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ming Lv & Jiulong Wang & Ming Tian & Neng Wan & Wenyi Tong & Chungang Duan & Jiamin Xue, 2024. "Multiresistance states in ferro- and antiferroelectric trilayer boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Dongyang Yang & Jing Liang & Jingda Wu & Yunhuan Xiao & Jerry I. Dadap & Kenji Watanabe & Takashi Taniguchi & Ziliang Ye, 2024. "Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Weijia Liu & Zhijian Du & Zhongyi Duan & La Li & Guozhen Shen, 2024. "Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Zhouxiaosong Zeng & Zhiqiang Tian & Yufan Wang & Cuihuan Ge & Fabian Strauß & Kai Braun & Patrick Michel & Lanyu Huang & Guixian Liu & Dong Li & Marcus Scheele & Mingxing Chen & Anlian Pan & Xiao Wang, 2024. "Dual polarization-enabled ultrafast bulk photovoltaic response in van der Waals heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Swarup Deb & Johannes Krause & Paulo E. Faria Junior & Michael Andreas Kempf & Rico Schwartz & Kenji Watanabe & Takashi Taniguchi & Jaroslav Fabian & Tobias Korn, 2024. "Excitonic signatures of ferroelectric order in parallel-stacked MoS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Wenhui Li & Xuanlin Zhang & Jia Yang & Song Zhou & Chuangye Song & Peng Cheng & Yi-Qi Zhang & Baojie Feng & Zhenxing Wang & Yunhao Lu & Kehui Wu & Lan Chen, 2023. "Emergence of ferroelectricity in a nonferroelectric monolayer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. James G. McHugh & Xue Li & Isaac Soltero & Vladimir I. Fal’ko, 2024. "Two-dimensional electrons at mirror and twistronic twin boundaries in van der Waals ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Georgy A. Ermolaev & Kirill V. Voronin & Adilet N. Toksumakov & Dmitriy V. Grudinin & Ilia M. Fradkin & Arslan Mazitov & Aleksandr S. Slavich & Mikhail K. Tatmyshevskiy & Dmitry I. Yakubovsky & Valent, 2024. "Wandering principal optical axes in van der Waals triclinic materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Chuqiao Shi & Nannan Mao & Kena Zhang & Tianyi Zhang & Ming-Hui Chiu & Kenna Ashen & Bo Wang & Xiuyu Tang & Galio Guo & Shiming Lei & Longqing Chen & Ye Cao & Xiaofeng Qian & Jing Kong & Yimo Han, 2023. "Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Hao Chen & Arpit Arora & Justin C. W. Song & Kian Ping Loh, 2023. "Gate-tunable anomalous Hall effect in Bernal tetralayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    19. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Yunze Gao & Astrid Weston & Vladimir Enaldiev & Xiao Li & Wendong Wang & James E. Nunn & Isaac Soltero & Eli G. Castanon & Amy Carl & Hugo Latour & Alex Summerfield & Matthew Hamer & James Howarth & N, 2024. "Tunnel junctions based on interfacial two dimensional ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48218-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.