IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v595y2021i7867d10.1038_s41586-021-03602-3.html
   My bibliography  Save this article

Real-time optimal quantum control of mechanical motion at room temperature

Author

Listed:
  • Lorenzo Magrini

    (University of Vienna)

  • Philipp Rosenzweig

    (Automation and Control Institute (ACIN), TU Wien)

  • Constanze Bach

    (University of Vienna)

  • Andreas Deutschmann-Olek

    (Automation and Control Institute (ACIN), TU Wien)

  • Sebastian G. Hofer

    (University of Vienna)

  • Sungkun Hong

    (University of Stuttgart
    University of Stuttgart)

  • Nikolai Kiesel

    (University of Vienna)

  • Andreas Kugi

    (Automation and Control Institute (ACIN), TU Wien
    Austrian Institute of Technology (AIT))

  • Markus Aspelmeyer

    (University of Vienna
    Austrian Academy of Sciences)

Abstract

The ability to accurately control the dynamics of physical systems by measurement and feedback is a pillar of modern engineering1. Today, the increasing demand for applied quantum technologies requires adaptation of this level of control to individual quantum systems2,3. Achieving this in an optimal way is a challenging task that relies on both quantum-limited measurements and specifically tailored algorithms for state estimation and feedback4. Successful implementations thus far include experiments on the level of optical and atomic systems5–7. Here we demonstrate real-time optimal control of the quantum trajectory8 of an optically trapped nanoparticle. We combine confocal position sensing close to the Heisenberg limit with optimal state estimation via Kalman filtering to track the particle motion in phase space in real time with a position uncertainty of 1.3 times the zero-point fluctuation. Optimal feedback allows us to stabilize the quantum harmonic oscillator to a mean occupation of 0.56 ± 0.02 quanta, realizing quantum ground-state cooling from room temperature. Our work establishes quantum Kalman filtering as a method to achieve quantum control of mechanical motion, with potential implications for sensing on all scales. In combination with levitation, this paves the way to full-scale control over the wavepacket dynamics of solid-state macroscopic quantum objects in linear and nonlinear systems.

Suggested Citation

  • Lorenzo Magrini & Philipp Rosenzweig & Constanze Bach & Andreas Deutschmann-Olek & Sebastian G. Hofer & Sungkun Hong & Nikolai Kiesel & Andreas Kugi & Markus Aspelmeyer, 2021. "Real-time optimal quantum control of mechanical motion at room temperature," Nature, Nature, vol. 595(7867), pages 373-377, July.
  • Handle: RePEc:nat:nature:v:595:y:2021:i:7867:d:10.1038_s41586-021-03602-3
    DOI: 10.1038/s41586-021-03602-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03602-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03602-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Mitsuyoshi Kamba & Ryoga Shimizu & Kiyotaka Aikawa, 2023. "Nanoscale feedback control of six degrees of freedom of a near-sphere," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Christian Bærentsen & Sergey A. Fedorov & Christoffer Østfeldt & Mikhail V. Balabas & Emil Zeuthen & Eugene S. Polzik, 2024. "Squeezed light from an oscillator measured at the rate of oscillation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:595:y:2021:i:7867:d:10.1038_s41586-021-03602-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.