IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39110-3.html
   My bibliography  Save this article

Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator

Author

Listed:
  • Canxun Zhang

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoScience Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory)

  • Tiancong Zhu

    (University of California
    Lawrence Berkeley National Laboratory)

  • Tomohiro Soejima

    (University of California)

  • Salman Kahn

    (University of California
    Lawrence Berkeley National Laboratory)

  • Kenji Watanabe

    (Research Center for Electronic and Optical Materials, National Institute for Materials Science)

  • Takashi Taniguchi

    (Research Center for Materials Nanoarchitectonics, National Institute for Materials Science)

  • Alex Zettl

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoScience Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory)

  • Feng Wang

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoScience Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory)

  • Michael P. Zaletel

    (University of California
    Lawrence Berkeley National Laboratory)

  • Michael F. Crommie

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoScience Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory)

Abstract

In recent years, correlated insulating states, unconventional superconductivity, and topologically non-trivial phases have all been observed in several moiré heterostructures. However, understanding of the physical mechanisms behind these phenomena is hampered by the lack of local electronic structure data. Here, we use scanning tunnelling microscopy and spectroscopy to demonstrate how the interplay between correlation, topology, and local atomic structure determines the behaviour of electron-doped twisted monolayer–bilayer graphene. Through gate- and magnetic field-dependent measurements, we observe local spectroscopic signatures indicating a quantum anomalous Hall insulating state with a total Chern number of ±2 at a doping level of three electrons per moiré unit cell. We show that the sign of the Chern number and associated magnetism can be electrostatically switched only over a limited range of twist angle and sample hetero-strain values. This results from a competition between the orbital magnetization of filled bulk bands and chiral edge states, which is sensitive to strain-induced distortions in the moiré superlattice.

Suggested Citation

  • Canxun Zhang & Tiancong Zhu & Tomohiro Soejima & Salman Kahn & Kenji Watanabe & Takashi Taniguchi & Alex Zettl & Feng Wang & Michael P. Zaletel & Michael F. Crommie, 2023. "Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39110-3
    DOI: 10.1038/s41467-023-39110-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39110-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39110-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    2. Youngjoon Choi & Hyunjin Kim & Yang Peng & Alex Thomson & Cyprian Lewandowski & Robert Polski & Yiran Zhang & Harpreet Singh Arora & Kenji Watanabe & Takashi Taniguchi & Jason Alicea & Stevan Nadj-Per, 2021. "Correlation-driven topological phases in magic-angle twisted bilayer graphene," Nature, Nature, vol. 589(7843), pages 536-541, January.
    3. H. Polshyn & J. Zhu & M. A. Kumar & Y. Zhang & F. Yang & C. L. Tschirhart & M. Serlin & K. Watanabe & T. Taniguchi & A. H. MacDonald & A. F. Young, 2020. "Electrical switching of magnetic order in an orbital Chern insulator," Nature, Nature, vol. 588(7836), pages 66-70, December.
    4. Minhao He & Ya-Hui Zhang & Yuhao Li & Zaiyao Fei & Kenji Watanabe & Takashi Taniguchi & Xiaodong Xu & Matthew Yankowitz, 2021. "Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Kevin P. Nuckolls & Myungchul Oh & Dillon Wong & Biao Lian & Kenji Watanabe & Takashi Taniguchi & B. Andrei Bernevig & Ali Yazdani, 2020. "Strongly correlated Chern insulators in magic-angle twisted bilayer graphene," Nature, Nature, vol. 588(7839), pages 610-615, December.
    6. Alexander Kerelsky & Leo J. McGilly & Dante M. Kennes & Lede Xian & Matthew Yankowitz & Shaowen Chen & K. Watanabe & T. Taniguchi & James Hone & Cory Dean & Angel Rubio & Abhay N. Pasupathy, 2019. "Maximized electron interactions at the magic angle in twisted bilayer graphene," Nature, Nature, vol. 572(7767), pages 95-100, August.
    7. Xiaobo Lu & Petr Stepanov & Wei Yang & Ming Xie & Mohammed Ali Aamir & Ipsita Das & Carles Urgell & Kenji Watanabe & Takashi Taniguchi & Guangyu Zhang & Adrian Bachtold & Allan H. MacDonald & Dmitri K, 2019. "Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene," Nature, Nature, vol. 574(7780), pages 653-657, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyun Zhang & Qian Li & Youngju Park & Yujin Jia & Wanying Chen & Jiaheng Li & Qinxin Liu & Changhua Bao & Nicolas Leconte & Shaohua Zhou & Yuan Wang & Kenji Watanabe & Takashi Taniguchi & Jose Avil, 2024. "Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Saisab Bhowmik & Bhaskar Ghawri & Youngju Park & Dongkyu Lee & Suvronil Datta & Radhika Soni & K. Watanabe & T. Taniguchi & Arindam Ghosh & Jeil Jung & U. Chandni, 2023. "Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Dacen Waters & Ruiheng Su & Ellis Thompson & Anna Okounkova & Esmeralda Arreguin-Martinez & Minhao He & Katherine Hinds & Kenji Watanabe & Takashi Taniguchi & Xiaodong Xu & Ya-Hui Zhang & Joshua Folk , 2024. "Topological flat bands in a family of multilayer graphene moiré lattices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Hongyun Zhang & Qian Li & Youngju Park & Yujin Jia & Wanying Chen & Jiaheng Li & Qinxin Liu & Changhua Bao & Nicolas Leconte & Shaohua Zhou & Yuan Wang & Kenji Watanabe & Takashi Taniguchi & Jose Avil, 2024. "Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. J. González & T. Stauber, 2023. "Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Xiangyan Han & Yuting Zou & Qianling Liu & Zhiyu Wang & Ruirui Niu & Zhuangzhuang Qu & Zhuoxian Li & Chunrui Han & Kenji Watanabe & Takashi Taniguchi & Baojuan Dong & Zhida Song & Jinhai Mao & Zheng H, 2024. "Suppression of symmetry-breaking correlated insulators in a rhombohedral trilayer graphene superlattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Daniel Shaffer & Jian Wang & Luiz H. Santos, 2022. "Unconventional self-similar Hofstadter superconductivity from repulsive interactions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Maine Christos & Subir Sachdev & Mathias S. Scheurer, 2023. "Nodal band-off-diagonal superconductivity in twisted graphene superlattices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Junxiong Hu & Junyou Tan & Mohammed M. Al Ezzi & Udvas Chattopadhyay & Jian Gou & Yuntian Zheng & Zihao Wang & Jiayu Chen & Reshmi Thottathil & Jiangbo Luo & Kenji Watanabe & Takashi Taniguchi & Andre, 2023. "Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39110-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.