IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46759-x.html
   My bibliography  Save this article

Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering

Author

Listed:
  • Hanyu Wang

    (National University of Defense Technology
    National University of Defense Technology
    National University of Defense Technology)

  • Wei Xu

    (National University of Defense Technology
    National University of Defense Technology
    National University of Defense Technology)

  • Zeyong Wei

    (Tongji University)

  • Yiyuan Wang

    (Harbin Engineering University)

  • Zhanshan Wang

    (Tongji University)

  • Xinbin Cheng

    (Tongji University)

  • Qinghua Guo

    (Hunan University)

  • Jinhui Shi

    (Harbin Engineering University)

  • Zhihong Zhu

    (National University of Defense Technology
    National University of Defense Technology
    National University of Defense Technology)

  • Biao Yang

    (National University of Defense Technology
    National University of Defense Technology
    National University of Defense Technology)

Abstract

As a milestone in the exploration of topological physics, Fermi arcs bridging Weyl points have been extensively studied. Weyl points, as are Fermi arcs, are believed to be only stable when preserving translation symmetry. However, no experimental observation of aperiodic Fermi arcs has been reported so far. Here, we continuously twist a bi-block Weyl meta-crystal and experimentally observe the twisted Fermi arc reconstruction. Although both the Weyl meta-crystals individually preserve translational symmetry, continuous twisting operation leads to the aperiodic hybridization and scattering of Fermi arcs on the interface, which is found to be determined by the singular total reflection around Weyl points. Our work unveils the aperiodic scattering of Fermi arcs and opens the door to continuously manipulating Fermi arcs.

Suggested Citation

  • Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46759-x
    DOI: 10.1038/s41467-024-46759-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46759-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46759-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin-Bin Chen & Yuan Da Liao & Ziyu Chen & Oskar Vafek & Jian Kang & Wei Li & Zi Yang Meng, 2021. "Realization of topological Mott insulator in a twisted bilayer graphene lattice model," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    3. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    4. Gui-Geng Liu & Zhen Gao & Qiang Wang & Xiang Xi & Yuan-Hang Hu & Maoren Wang & Chengqi Liu & Xiao Lin & Longjiang Deng & Shengyuan A. Yang & Peiheng Zhou & Yihao Yang & Yidong Chong & Baile Zhang, 2022. "Topological Chern vectors in three-dimensional photonic crystals," Nature, Nature, vol. 609(7929), pages 925-930, September.
    5. Qing Zhang & Guangwei Hu & Weiliang Ma & Peining Li & Alex Krasnok & Rainer Hillenbrand & Andrea Alù & Cheng-Wei Qiu, 2021. "Interface nano-optics with van der Waals polaritons," Nature, Nature, vol. 597(7875), pages 187-195, September.
    6. H. F. Yang & L. X. Yang & Z. K. Liu & Y. Sun & C. Chen & H. Peng & M. Schmidt & D. Prabhakaran & B. A. Bernevig & C. Felser & B. H. Yan & Y. L. Chen, 2019. "Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. Yuan Cao & Daniel Rodan-Legrain & Oriol Rubies-Bigorda & Jeong Min Park & Kenji Watanabe & Takashi Taniguchi & Pablo Jarillo-Herrero, 2020. "Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene," Nature, Nature, vol. 583(7815), pages 215-220, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Hongyun Zhang & Qian Li & Youngju Park & Yujin Jia & Wanying Chen & Jiaheng Li & Qinxin Liu & Changhua Bao & Nicolas Leconte & Shaohua Zhou & Yuan Wang & Kenji Watanabe & Takashi Taniguchi & Jose Avil, 2024. "Observation of dichotomic field-tunable electronic structure in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Trithep Devakul & Valentin Crépel & Yang Zhang & Liang Fu, 2021. "Magic in twisted transition metal dichalcogenide bilayers," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Huagen Li & Dong Wang & Guoqiang Xu & Kaipeng Liu & Tan Zhang & Jiaxin Li & Guangming Tao & Shuihua Yang & Yanghua Lu & Run Hu & Shisheng Lin & Ying Li & Cheng-Wei Qiu, 2024. "Twisted moiré conductive thermal metasurface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Pratap Chandra Adak & Subhajit Sinha & Debasmita Giri & Dibya Kanti Mukherjee & Chandan & L. D. Varma Sangani & Surat Layek & Ayshi Mukherjee & Kenji Watanabe & Takashi Taniguchi & H. A. Fertig & Arij, 2022. "Perpendicular electric field drives Chern transitions and layer polarization changes in Hofstadter bands," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Manabendra Kuiri & Christopher Coleman & Zhenxiang Gao & Aswin Vishnuradhan & Kenji Watanabe & Takashi Taniguchi & Jihang Zhu & Allan H. MacDonald & Joshua Folk, 2022. "Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Yufei Sun & Yujia Wang & Enze Wang & Bolun Wang & Hengyi Zhao & Yongpan Zeng & Qinghua Zhang & Yonghuang Wu & Lin Gu & Xiaoyan Li & Kai Liu, 2022. "Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Le Liu & Shihao Zhang & Yanbang Chu & Cheng Shen & Yuan Huang & Yalong Yuan & Jinpeng Tian & Jian Tang & Yiru Ji & Rong Yang & Kenji Watanabe & Takashi Taniguchi & Dongxia Shi & Jianpeng Liu & Wei Yan, 2022. "Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Dorri Halbertal & Simon Turkel & Christopher J. Ciccarino & Jonas B. Profe & Nathan Finney & Valerie Hsieh & Kenji Watanabe & Takashi Taniguchi & James Hone & Cory Dean & Prineha Narang & Abhay N. Pas, 2022. "Unconventional non-local relaxation dynamics in a twisted trilayer graphene moiré superlattice," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. He Wang & Yanzhao Liu & Ming Gong & Hua Jiang & Xiaoyue Gao & Wenlong Ma & Jiawei Luo & Haoran Ji & Jun Ge & Shuang Jia & Peng Gao & Ziqiang Wang & X. C. Xie & Jian Wang, 2023. "Emergent superconductivity in topological-kagome-magnet/metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Kaijie Yang & Zian Xu & Yanjie Feng & Frank Schindler & Yuanfeng Xu & Zhen Bi & B. Andrei Bernevig & Peizhe Tang & Chao-Xing Liu, 2024. "Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46759-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.