IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47839-8.html
   My bibliography  Save this article

High-confidence 3D template matching for cryo-electron tomography

Author

Listed:
  • Sergio Cruz-León

    (Max Planck Institute of Biophysics)

  • Tomáš Majtner

    (Max Planck Institute of Biophysics)

  • Patrick C. Hoffmann

    (Max Planck Institute of Biophysics)

  • Jan Philipp Kreysing

    (Max Planck Institute of Biophysics
    IMPRS on Cellular Biophysics)

  • Sebastian Kehl

    (Max Planck Computing and Data Facility)

  • Maarten W. Tuijtel

    (Max Planck Institute of Biophysics)

  • Stefan L. Schaefer

    (Max Planck Institute of Biophysics)

  • Katharina Geißler

    (Max Planck Institute of Biophysics
    IMPRS on Cellular Biophysics)

  • Martin Beck

    (Max Planck Institute of Biophysics
    Goethe University Frankfurt)

  • Beata Turoňová

    (Max Planck Institute of Biophysics)

  • Gerhard Hummer

    (Max Planck Institute of Biophysics
    Goethe University Frankfurt)

Abstract

Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.

Suggested Citation

  • Sergio Cruz-León & Tomáš Majtner & Patrick C. Hoffmann & Jan Philipp Kreysing & Sebastian Kehl & Maarten W. Tuijtel & Stefan L. Schaefer & Katharina Geißler & Martin Beck & Beata Turoňová & Gerhard Hu, 2024. "High-confidence 3D template matching for cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47839-8
    DOI: 10.1038/s41467-024-47839-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47839-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47839-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Max Gemmer & Marten L. Chaillet & Joyce Loenhout & Rodrigo Cuevas Arenas & Dimitrios Vismpas & Mariska Gröllers-Mulderij & Fujiet A. Koh & Pascal Albanese & Richard A. Scheltema & Stuart C. Howes & Ab, 2023. "Visualization of translation and protein biogenesis at the ER membrane," Nature, Nature, vol. 614(7946), pages 160-167, February.
    2. William Wan & Larissa Kolesnikova & Mairi Clarke & Alexander Koehler & Takeshi Noda & Stephan Becker & John A. G. Briggs, 2017. "Structure and assembly of the Ebola virus nucleocapsid," Nature, Nature, vol. 551(7680), pages 394-397, November.
    3. Liang Xue & Swantje Lenz & Maria Zimmermann-Kogadeeva & Dimitry Tegunov & Patrick Cramer & Peer Bork & Juri Rappsilber & Julia Mahamid, 2022. "Publisher Correction: Visualizing translation dynamics at atomic detail inside a bacterial cell," Nature, Nature, vol. 611(7937), pages 13-13, November.
    4. Liang Xue & Swantje Lenz & Maria Zimmermann-Kogadeeva & Dimitry Tegunov & Patrick Cramer & Peer Bork & Juri Rappsilber & Julia Mahamid, 2022. "Visualizing translation dynamics at atomic detail inside a bacterial cell," Nature, Nature, vol. 610(7930), pages 205-211, October.
    5. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Alister Burt & C. Keith Cassidy & Peter Ames & Maria Bacia-Verloop & Megghane Baulard & Karine Huard & Zaida Luthey-Schulten & Ambroise Desfosses & Phillip J. Stansfeld & William Margolin & John S. Pa, 2020. "Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Joachim Frank & Rajendra Kumar Agrawal, 2000. "A ratchet-like inter-subunit reorganization of the ribosome during translocation," Nature, Nature, vol. 406(6793), pages 318-322, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iskander Khusainov & Natalie Romanov & Camille Goemans & Beata Turoňová & Christian E. Zimmerli & Sonja Welsch & Julian D. Langer & Athanasios Typas & Martin Beck, 2024. "Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Lior Aram & Diede Haan & Neta Varsano & James B. Gilchrist & Christoph Heintze & Ron Rotkopf & Katya Rechav & Nadav Elad & Nils Kröger & Assaf Gal, 2024. "Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Timo Flügel & Magdalena Schacherl & Anett Unbehaun & Birgit Schroeer & Marylena Dabrowski & Jörg Bürger & Thorsten Mielke & Thiemo Sprink & Christoph A. Diebolder & Yollete V. Guillén Schlippe & Chris, 2024. "Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Nikita Balyschew & Artsemi Yushkevich & Vasilii Mikirtumov & Ricardo M. Sanchez & Thiemo Sprink & Mikhail Kudryashev, 2023. "Streamlined structure determination by cryo-electron tomography and subtomogram averaging using TomoBEAR," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Keigo Fujiwara & Naoko Tsuji & Mayu Yoshida & Hiraku Takada & Shinobu Chiba, 2024. "Patchy and widespread distribution of bacterial translation arrest peptides associated with the protein localization machinery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Lorène Gonnin & Ambroise Desfosses & Maria Bacia-Verloop & Didier Chevret & Marie Galloux & Jean-François Éléouët & Irina Gutsche, 2023. "Structural landscape of the respiratory syncytial virus nucleocapsids," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Christine E. Carbone & Anna B. Loveland & Howard B. Gamper & Ya-Ming Hou & Gabriel Demo & Andrei A. Korostelev, 2021. "Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Xing Zhang & Yanan Xiao & Xin You & Shan Sun & Sen-Fang Sui, 2024. "In situ structural determination of cyanobacterial phycobilisome–PSII supercomplex by STAgSPA strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Panagiotis Poulis & Anoshi Patel & Marina V. Rodnina & Sarah Adio, 2022. "Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Marion Jasnin & Jordan Hervy & Stéphanie Balor & Anaïs Bouissou & Amsha Proag & Raphaël Voituriez & Jonathan Schneider & Thomas Mangeat & Isabelle Maridonneau-Parini & Wolfgang Baumeister & Serge Dmit, 2022. "Elasticity of podosome actin networks produces nanonewton protrusive forces," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Selma Dahmane & Adeline Kerviel & Dustin R. Morado & Kasturika Shankar & Björn Ahlman & Michael Lazarou & Nihal Altan-Bonnet & Lars-Anders Carlson, 2022. "Membrane-assisted assembly and selective secretory autophagy of enteroviruses," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Chen Bao & Mingyi Zhu & Inna Nykonchuk & Hironao Wakabayashi & David H. Mathews & Dmitri N. Ermolenko, 2022. "Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Marta Šiborová & Tibor Füzik & Michaela Procházková & Jiří Nováček & Martin Benešík & Anders S. Nilsson & Pavel Plevka, 2022. "Tail proteins of phage SU10 reorganize into the nozzle for genome delivery," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Olivier Gemin & Maciej Gluc & Higor Rosa & Michael Purdy & Moritz Niemann & Yelena Peskova & Simone Mattei & Ahmad Jomaa, 2024. "Ribosomes hibernate on mitochondria during cellular stress," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Yoko Fujita-Fujiharu & Yukihiko Sugita & Yuki Takamatsu & Kazuya Houri & Manabu Igarashi & Yukiko Muramoto & Masahiro Nakano & Yugo Tsunoda & Ichiro Taniguchi & Stephan Becker & Takeshi Noda, 2022. "Structural insight into Marburg virus nucleoprotein–RNA complex formation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47839-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.