IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v610y2022i7930d10.1038_s41586-022-05255-2.html
   My bibliography  Save this article

Visualizing translation dynamics at atomic detail inside a bacterial cell

Author

Listed:
  • Liang Xue

    (European Molecular Biology Laboratory (EMBL)
    Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences)

  • Swantje Lenz

    (Technische Universität Berlin)

  • Maria Zimmermann-Kogadeeva

    (European Molecular Biology Laboratory (EMBL))

  • Dimitry Tegunov

    (Max-Planck-Institute for Biophysical Chemistry)

  • Patrick Cramer

    (Max-Planck-Institute for Biophysical Chemistry)

  • Peer Bork

    (European Molecular Biology Laboratory (EMBL)
    Yonsei University
    University of Würzburg)

  • Juri Rappsilber

    (Technische Universität Berlin
    University of Edinburgh)

  • Julia Mahamid

    (European Molecular Biology Laboratory (EMBL))

Abstract

Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.

Suggested Citation

  • Liang Xue & Swantje Lenz & Maria Zimmermann-Kogadeeva & Dimitry Tegunov & Patrick Cramer & Peer Bork & Juri Rappsilber & Julia Mahamid, 2022. "Visualizing translation dynamics at atomic detail inside a bacterial cell," Nature, Nature, vol. 610(7930), pages 205-211, October.
  • Handle: RePEc:nat:nature:v:610:y:2022:i:7930:d:10.1038_s41586-022-05255-2
    DOI: 10.1038/s41586-022-05255-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05255-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05255-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Lior Aram & Diede Haan & Neta Varsano & James B. Gilchrist & Christoph Heintze & Ron Rotkopf & Katya Rechav & Nadav Elad & Nils Kröger & Assaf Gal, 2024. "Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Nikita Balyschew & Artsemi Yushkevich & Vasilii Mikirtumov & Ricardo M. Sanchez & Thiemo Sprink & Mikhail Kudryashev, 2023. "Streamlined structure determination by cryo-electron tomography and subtomogram averaging using TomoBEAR," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Keigo Fujiwara & Naoko Tsuji & Mayu Yoshida & Hiraku Takada & Shinobu Chiba, 2024. "Patchy and widespread distribution of bacterial translation arrest peptides associated with the protein localization machinery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Timo Flügel & Magdalena Schacherl & Anett Unbehaun & Birgit Schroeer & Marylena Dabrowski & Jörg Bürger & Thorsten Mielke & Thiemo Sprink & Christoph A. Diebolder & Yollete V. Guillén Schlippe & Chris, 2024. "Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Jianfang Liu & Ewan K. S. McRae & Meng Zhang & Cody Geary & Ebbe Sloth Andersen & Gang Ren, 2024. "Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Iskander Khusainov & Natalie Romanov & Camille Goemans & Beata Turoňová & Christian E. Zimmerli & Sonja Welsch & Julian D. Langer & Athanasios Typas & Martin Beck, 2024. "Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Sergio Cruz-León & Tomáš Majtner & Patrick C. Hoffmann & Jan Philipp Kreysing & Sebastian Kehl & Maarten W. Tuijtel & Stefan L. Schaefer & Katharina Geißler & Martin Beck & Beata Turoňová & Gerhard Hu, 2024. "High-confidence 3D template matching for cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:610:y:2022:i:7930:d:10.1038_s41586-022-05255-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.