IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54431-7.html
   My bibliography  Save this article

Cryo-EM structure of single-layered nucleoprotein-RNA complex from Marburg virus

Author

Listed:
  • Luca Zinzula

    (Research Group Molecular Structural Biology
    ShanghaiTech University)

  • Florian Beck

    (Research Group Molecular Structural Biology
    Research Group CryoEM Technology)

  • Marianna Camasta

    (Research Group Molecular Structural Biology)

  • Stefan Bohn

    (Research Group Molecular Structural Biology
    Helmholtz Center Munich)

  • Chuan Liu

    (Research Group Molecular Structural Biology)

  • Dustin Morado

    (Department of Cell and Virus Structure
    Science for Life Laboratory)

  • Andreas Bracher

    (Department of Cellular Biochemistry)

  • Juergen M. Plitzko

    (Research Group Molecular Structural Biology
    Research Group CryoEM Technology)

  • Wolfgang Baumeister

    (Research Group Molecular Structural Biology
    ShanghaiTech University)

Abstract

Marburg virus (MARV) causes lethal hemorrhagic fever in humans, posing a threat to global health. We determined by cryogenic electron microscopy (cryo-EM) the MARV helical ribonucleoprotein (RNP) complex structure in single-layered conformation, which differs from the previously reported structure of a double-layered helix. Our findings illuminate novel RNP interactions and expand knowledge on MARV genome packaging and nucleocapsid assembly, both processes representing attractive targets for the development of antiviral therapeutics against MARV disease.

Suggested Citation

  • Luca Zinzula & Florian Beck & Marianna Camasta & Stefan Bohn & Chuan Liu & Dustin Morado & Andreas Bracher & Juergen M. Plitzko & Wolfgang Baumeister, 2024. "Cryo-EM structure of single-layered nucleoprotein-RNA complex from Marburg virus," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54431-7
    DOI: 10.1038/s41467-024-54431-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54431-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54431-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yukihiko Sugita & Hideyuki Matsunami & Yoshihiro Kawaoka & Takeshi Noda & Matthias Wolf, 2018. "Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex at 3.6 Å resolution," Nature, Nature, vol. 563(7729), pages 137-140, November.
    2. William Wan & Larissa Kolesnikova & Mairi Clarke & Alexander Koehler & Takeshi Noda & Stephan Becker & John A. G. Briggs, 2017. "Structure and assembly of the Ebola virus nucleocapsid," Nature, Nature, vol. 551(7680), pages 394-397, November.
    3. Yoko Fujita-Fujiharu & Yukihiko Sugita & Yuki Takamatsu & Kazuya Houri & Manabu Igarashi & Yukiko Muramoto & Masahiro Nakano & Yugo Tsunoda & Ichiro Taniguchi & Stephan Becker & Takeshi Noda, 2022. "Structural insight into Marburg virus nucleoprotein–RNA complex formation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorène Gonnin & Ambroise Desfosses & Maria Bacia-Verloop & Didier Chevret & Marie Galloux & Jean-François Éléouët & Irina Gutsche, 2023. "Structural landscape of the respiratory syncytial virus nucleocapsids," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yoko Fujita-Fujiharu & Yukihiko Sugita & Yuki Takamatsu & Kazuya Houri & Manabu Igarashi & Yukiko Muramoto & Masahiro Nakano & Yugo Tsunoda & Ichiro Taniguchi & Stephan Becker & Takeshi Noda, 2022. "Structural insight into Marburg virus nucleoprotein–RNA complex formation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Marion Jasnin & Jordan Hervy & Stéphanie Balor & Anaïs Bouissou & Amsha Proag & Raphaël Voituriez & Jonathan Schneider & Thomas Mangeat & Isabelle Maridonneau-Parini & Wolfgang Baumeister & Serge Dmit, 2022. "Elasticity of podosome actin networks produces nanonewton protrusive forces," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Selma Dahmane & Adeline Kerviel & Dustin R. Morado & Kasturika Shankar & Björn Ahlman & Michael Lazarou & Nihal Altan-Bonnet & Lars-Anders Carlson, 2022. "Membrane-assisted assembly and selective secretory autophagy of enteroviruses," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Sergio Cruz-León & Tomáš Majtner & Patrick C. Hoffmann & Jan Philipp Kreysing & Sebastian Kehl & Maarten W. Tuijtel & Stefan L. Schaefer & Katharina Geißler & Martin Beck & Beata Turoňová & Gerhard Hu, 2024. "High-confidence 3D template matching for cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54431-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.