IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47518-8.html
   My bibliography  Save this article

Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device

Author

Listed:
  • Yunxiang Wang

    (Bioinformatics Center of AMMS)

  • Hong Chen

    (Bioinformatics Center of AMMS)

  • Kai Lin

    (Air Force Medical Center, Air Force Medical University)

  • Yongjun Han

    (Bioinformatics Center of AMMS)

  • Zhixia Gu

    (Capital Medical University)

  • Hongjuan Wei

    (Bioinformatics Center of AMMS)

  • Kai Mu

    (Bioinformatics Center of AMMS)

  • Dongfeng Wang

    (Bioinformatics Center of AMMS)

  • Liyan Liu

    (Bioinformatics Center of AMMS)

  • Ronghua Jin

    (Capital Medical University)

  • Rui Song

    (Capital Medical University)

  • Zhen Rong

    (Bioinformatics Center of AMMS)

  • Shengqi Wang

    (Bioinformatics Center of AMMS)

Abstract

The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.

Suggested Citation

  • Yunxiang Wang & Hong Chen & Kai Lin & Yongjun Han & Zhixia Gu & Hongjuan Wei & Kai Mu & Dongfeng Wang & Liyan Liu & Ronghua Jin & Rui Song & Zhen Rong & Shengqi Wang, 2024. "Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47518-8
    DOI: 10.1038/s41467-024-47518-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47518-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47518-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandra East-Seletsky & Mitchell R. O’Connell & Spencer C. Knight & David Burstein & Jamie H. D. Cate & Robert Tjian & Jennifer A. Doudna, 2016. "Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection," Nature, Nature, vol. 538(7624), pages 270-273, October.
    2. Zhichen Xu & Dongjuan Chen & Tao Li & Jiayu Yan & Jiang Zhu & Ting He & Rui Hu & Ying Li & Yunhuang Yang & Maili Liu, 2022. "Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Xiong Ding & Kun Yin & Ziyue Li & Rajesh V. Lalla & Enrique Ballesteros & Maroun M. Sfeir & Changchun Liu, 2020. "Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Max Kozlov, 2022. "Monkeypox goes global: why scientists are on alert," Nature, Nature, vol. 606(7912), pages 15-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqian Guo & Yaofeng Zhou & Hong Duan & Derong Xu & Min Wei & Yuhao Wu & Ying Xiong & Xirui Chen & Siyuan Wang & Daofeng Liu & Xiaolin Huang & Hongbo Xin & Yonghua Xiong & Ben Zhong Tang, 2024. "CRISPR/Cas-mediated “one to more” lighting-up nucleic acid detection using aggregation-induced emission luminogens," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Chang Yeol Lee & Hyunho Kim & Ismail Degani & Hanna Lee & Angel Sandoval & Yoonho Nam & Madeleine Pascavis & Hyun Gyu Park & Thomas Randall & Amy Ly & Cesar M. Castro & Hakho Lee, 2024. "Empowering the on-site detection of nucleic acids by integrating CRISPR and digital signal processing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Jeong Moon & Changchun Liu, 2023. "Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shimei Shen & Wen Wang & Yuanyan Ma & Shilei Wang & Shaocheng Zhang & Xuefei Cai & Liang Chen & Jin Zhang & Yalan Li & Xiaoli Wu & Jie Wei & Yanan Zhao & Ailong Huang & Siqiang Niu & Deqiang Wang, 2024. "Affinity molecular assay for detecting Candida albicans using chitin affinity and RPA-CRISPR/Cas12a," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Hongrui Zhao & Yan Sheng & Tenghua Zhang & Shujun Zhou & Yuqing Zhu & Feiyang Qian & Meiru Liu & Weixue Xu & Dengsong Zhang & Jiaming Hu, 2024. "The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Wenhui Li & Xianyue Jiang & Wuke Wang & Liya Hou & Runze Cai & Yongqian Li & Qiuxi Gu & Qinchang Chen & Peixiang Ma & Jin Tang & Menghao Guo & Guohui Chuai & Xingxu Huang & Jun Zhang & Qi Liu, 2024. "Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Jiongyu Zhang & Chengyu Hou & Changchun Liu, 2024. "CRISPR-powered quantitative keyword search engine in DNA data storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. M. Alejandra Zeballos C. & Hayden J. Moore & Tyler J. Smith & Jackson E. Powell & Najah S. Ahsan & Sijia Zhang & Thomas Gaj, 2023. "Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Md. Rabiul Islam & Moynul Hasan & Mohammad Saydur Rahman & Md. Ashrafur Rahman, 2022. "Monkeypox outbreak – No panic and stigma; Only awareness and preventive measures can halt the pandemic turn of this epidemic infection," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(5), pages 3008-3011, September.
    14. Ning Cui & Jun-Tao Zhang & Zhuolin Li & Xiao-Yu Liu & Chongyuan Wang & Hongda Huang & Ning Jia, 2022. "Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Zhichen Xu & Dongjuan Chen & Tao Li & Jiayu Yan & Jiang Zhu & Ting He & Rui Hu & Ying Li & Yunhuang Yang & Maili Liu, 2022. "Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Hung-Che Kuo & Joshua Prupes & Chia-Wei Chou & Ilya J. Finkelstein, 2024. "Massively parallel profiling of RNA-targeting CRISPR-Cas13d," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Xiangyu Deng & Emmanuel Osikpa & Jie Yang & Seye J. Oladeji & Jamie Smith & Xue Gao & Yang Gao, 2023. "Structural basis for the activation of a compact CRISPR-Cas13 nuclease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Yichuan Chen & Xinping Wang & Junqi Zhang & Qingyuan Jiang & Bin Qiao & Baoxia He & Wenhao Yin & Jie Qiao & Yi Liu, 2024. "Split crRNA with CRISPR-Cas12a enabling highly sensitive and multiplexed detection of RNA and DNA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Anna Nemudraia & Artem Nemudryi & Murat Buyukyoruk & Andrew M. Scherffius & Trevor Zahl & Tanner Wiegand & Shishir Pandey & Joseph E. Nichols & Laina N. Hall & Aidan McVey & Helen H. Lee & Royce A. Wi, 2022. "Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47518-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.