IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v538y2016i7624d10.1038_nature19802.html
   My bibliography  Save this article

Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection

Author

Listed:
  • Alexandra East-Seletsky

    (University of California)

  • Mitchell R. O’Connell

    (University of California)

  • Spencer C. Knight

    (University of California)

  • David Burstein

    (University of California)

  • Jamie H. D. Cate

    (University of California
    University of California
    Lawrence Berkeley National Laboratory)

  • Robert Tjian

    (University of California
    Janelia Research Campus, Howard Hughes Medical Institute
    Howard Hughes Medical Institute, University of California
    Li Ka Shing Biomedical and Health Sciences Center, University of California)

  • Jennifer A. Doudna

    (University of California
    University of California
    Lawrence Berkeley National Laboratory
    Howard Hughes Medical Institute, University of California)

Abstract

The CRISPR-associated bacterial enzyme C2c2 is shown to contain two separable, distinct sites for the highly sensitive detection and cleavage of single-stranded RNA.

Suggested Citation

  • Alexandra East-Seletsky & Mitchell R. O’Connell & Spencer C. Knight & David Burstein & Jamie H. D. Cate & Robert Tjian & Jennifer A. Doudna, 2016. "Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection," Nature, Nature, vol. 538(7624), pages 270-273, October.
  • Handle: RePEc:nat:nature:v:538:y:2016:i:7624:d:10.1038_nature19802
    DOI: 10.1038/nature19802
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19802
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Hung-Che Kuo & Joshua Prupes & Chia-Wei Chou & Ilya J. Finkelstein, 2024. "Massively parallel profiling of RNA-targeting CRISPR-Cas13d," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. M. Alejandra Zeballos C. & Hayden J. Moore & Tyler J. Smith & Jackson E. Powell & Najah S. Ahsan & Sijia Zhang & Thomas Gaj, 2023. "Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Xiangyu Deng & Emmanuel Osikpa & Jie Yang & Seye J. Oladeji & Jamie Smith & Xue Gao & Yang Gao, 2023. "Structural basis for the activation of a compact CRISPR-Cas13 nuclease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Yunxiang Wang & Hong Chen & Kai Lin & Yongjun Han & Zhixia Gu & Hongjuan Wei & Kai Mu & Dongfeng Wang & Liyan Liu & Ronghua Jin & Rui Song & Zhen Rong & Shengqi Wang, 2024. "Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ning Cui & Jun-Tao Zhang & Zhuolin Li & Xiao-Yu Liu & Chongyuan Wang & Hongda Huang & Ning Jia, 2022. "Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Anna Nemudraia & Artem Nemudryi & Murat Buyukyoruk & Andrew M. Scherffius & Trevor Zahl & Tanner Wiegand & Shishir Pandey & Joseph E. Nichols & Laina N. Hall & Aidan McVey & Helen H. Lee & Royce A. Wi, 2022. "Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Hongrui Zhao & Yan Sheng & Tenghua Zhang & Shujun Zhou & Yuqing Zhu & Feiyang Qian & Meiru Liu & Weixue Xu & Dengsong Zhang & Jiaming Hu, 2024. "The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:538:y:2016:i:7624:d:10.1038_nature19802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.