IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18575-6.html
   My bibliography  Save this article

Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay

Author

Listed:
  • Xiong Ding

    (University of Connecticut Health Center)

  • Kun Yin

    (University of Connecticut Health Center)

  • Ziyue Li

    (University of Connecticut Health Center)

  • Rajesh V. Lalla

    (University of Connecticut Health Center)

  • Enrique Ballesteros

    (University of Connecticut Health Center)

  • Maroun M. Sfeir

    (University of Connecticut Health Center)

  • Changchun Liu

    (University of Connecticut Health Center)

Abstract

The recent outbreak of novel coronavirus (SARS-CoV-2) causing COVID-19 disease spreads rapidly in the world. Rapid and early detection of SARS-CoV-2 facilitates early intervention and prevents the disease spread. Here, we present an All-In-One Dual CRISPR-Cas12a (AIOD-CRISPR) assay for one-pot, ultrasensitive, and visual SARS-CoV-2 detection. By targeting SARS-CoV-2’s nucleoprotein gene, two CRISPR RNAs without protospacer adjacent motif (PAM) site limitation are introduced to develop the AIOD-CRISPR assay and detect the nucleic acids with a sensitivity of few copies. We validate the assay by using COVID-19 clinical swab samples and obtain consistent results with RT-PCR assay. Furthermore, a low-cost hand warmer (~$0.3) is used as an incubator of the AIOD-CRISPR assay to detect clinical samples within 20 min, enabling an instrument-free, visual SARS-CoV-2 detection at the point of care. Thus, our method has the significant potential to provide a rapid, sensitive, one-pot point-of-care assay for SARS-CoV-2.

Suggested Citation

  • Xiong Ding & Kun Yin & Ziyue Li & Rajesh V. Lalla & Enrique Ballesteros & Maroun M. Sfeir & Changchun Liu, 2020. "Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18575-6
    DOI: 10.1038/s41467-020-18575-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18575-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18575-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiongyu Zhang & Chengyu Hou & Changchun Liu, 2024. "CRISPR-powered quantitative keyword search engine in DNA data storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yunxiang Wang & Hong Chen & Kai Lin & Yongjun Han & Zhixia Gu & Hongjuan Wei & Kai Mu & Dongfeng Wang & Liyan Liu & Ronghua Jin & Rui Song & Zhen Rong & Shengqi Wang, 2024. "Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Chang Yeol Lee & Hyunho Kim & Ismail Degani & Hanna Lee & Angel Sandoval & Yoonho Nam & Madeleine Pascavis & Hyun Gyu Park & Thomas Randall & Amy Ly & Cesar M. Castro & Hakho Lee, 2024. "Empowering the on-site detection of nucleic acids by integrating CRISPR and digital signal processing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Zhichen Xu & Dongjuan Chen & Tao Li & Jiayu Yan & Jiang Zhu & Ting He & Rui Hu & Ying Li & Yunhuang Yang & Maili Liu, 2022. "Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Yuqian Guo & Yaofeng Zhou & Hong Duan & Derong Xu & Min Wei & Yuhao Wu & Ying Xiong & Xirui Chen & Siyuan Wang & Daofeng Liu & Xiaolin Huang & Hongbo Xin & Yonghua Xiong & Ben Zhong Tang, 2024. "CRISPR/Cas-mediated “one to more” lighting-up nucleic acid detection using aggregation-induced emission luminogens," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Jeong Moon & Changchun Liu, 2023. "Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Shimei Shen & Wen Wang & Yuanyan Ma & Shilei Wang & Shaocheng Zhang & Xuefei Cai & Liang Chen & Jin Zhang & Yalan Li & Xiaoli Wu & Jie Wei & Yanan Zhao & Ailong Huang & Siqiang Niu & Deqiang Wang, 2024. "Affinity molecular assay for detecting Candida albicans using chitin affinity and RPA-CRISPR/Cas12a," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18575-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.