IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47514-y.html
   My bibliography  Save this article

FGFR inhibition blocks NF-ĸB-dependent glucose metabolism and confers metabolic vulnerabilities in cholangiocarcinoma

Author

Listed:
  • Yuanli Zhen

    (Massachusetts General Hospital
    Massachusetts General Hospital
    Harvard Medical School
    Broad Institute)

  • Kai Liu

    (Harvard Medical School)

  • Lei Shi

    (Massachusetts General Hospital
    Massachusetts General Hospital
    Harvard Medical School
    Broad Institute)

  • Simran Shah

    (Massachusetts General Hospital)

  • Qin Xu

    (Massachusetts General Hospital
    Massachusetts General Hospital
    Harvard Medical School
    Broad Institute)

  • Haley Ellis

    (Massachusetts General Hospital
    Massachusetts General Hospital
    Harvard Medical School
    Broad Institute)

  • Eranga R. Balasooriya

    (Massachusetts General Hospital
    Massachusetts General Hospital
    Harvard Medical School
    Broad Institute)

  • Johannes Kreuzer

    (Massachusetts General Hospital
    Harvard Medical School)

  • Robert Morris

    (Massachusetts General Hospital)

  • Albert S. Baldwin

    (University of North Carolina at Chapel Hill School of Medicine)

  • Dejan Juric

    (Massachusetts General Hospital
    Harvard Medical School)

  • Wilhelm Haas

    (Massachusetts General Hospital
    Harvard Medical School)

  • Nabeel Bardeesy

    (Massachusetts General Hospital
    Massachusetts General Hospital
    Harvard Medical School
    Broad Institute)

Abstract

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.

Suggested Citation

  • Yuanli Zhen & Kai Liu & Lei Shi & Simran Shah & Qin Xu & Haley Ellis & Eranga R. Balasooriya & Johannes Kreuzer & Robert Morris & Albert S. Baldwin & Dejan Juric & Wilhelm Haas & Nabeel Bardeesy, 2024. "FGFR inhibition blocks NF-ĸB-dependent glucose metabolism and confers metabolic vulnerabilities in cholangiocarcinoma," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47514-y
    DOI: 10.1038/s41467-024-47514-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47514-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47514-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rushika M. Perera & Svetlana Stoykova & Brandon N. Nicolay & Kenneth N. Ross & Julien Fitamant & Myriam Boukhali & Justine Lengrand & Vikram Deshpande & Martin K. Selig & Cristina R. Ferrone & Jeff Se, 2015. "Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism," Nature, Nature, vol. 524(7565), pages 361-365, August.
    2. Andrea Viale & Piergiorgio Pettazzoni & Costas A. Lyssiotis & Haoqiang Ying & Nora Sánchez & Matteo Marchesini & Alessandro Carugo & Tessa Green & Sahil Seth & Virginia Giuliani & Maria Kost-Alimova &, 2014. "Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function," Nature, Nature, vol. 514(7524), pages 628-632, October.
    3. Pengchun Yu & Kerstin Wilhelm & Alexandre Dubrac & Joe K. Tung & Tiago C. Alves & Jennifer S. Fang & Yi Xie & Jie Zhu & Zehua Chen & Frederik De Smet & Jiasheng Zhang & Suk-Won Jin & Lele Sun & Hongye, 2017. "FGF-dependent metabolic control of vascular development," Nature, Nature, vol. 545(7653), pages 224-228, May.
    4. Nan Jin & Aiwei Bi & Xiaojing Lan & Jun Xu & Xiaomin Wang & Yingluo Liu & Ting Wang & Shuai Tang & Hanlin Zeng & Ziqi Chen & Minjia Tan & Jing Ai & Hua Xie & Tao Zhang & Dandan Liu & Ruimin Huang & Yu, 2019. "Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    5. Kıvanç Birsoy & Richard Possemato & Franziska K. Lorbeer & Erol C. Bayraktar & Prathapan Thiru & Burcu Yucel & Tim Wang & Walter W. Chen & Clary B. Clish & David M. Sabatini, 2014. "Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides," Nature, Nature, vol. 508(7494), pages 108-112, April.
    6. Véronique Frattini & Stefano M. Pagnotta & Tala & Jerry J. Fan & Marco V. Russo & Sang Bae Lee & Luciano Garofano & Jing Zhang & Peiguo Shi & Genevieve Lewis & Heloise Sanson & Vanessa Frederick & Ang, 2018. "A metabolic function of FGFR3-TACC3 gene fusions in cancer," Nature, Nature, vol. 553(7687), pages 222-227, January.
    7. Daniel Zingg & Jinhyuk Bhin & Julia Yemelyanenko & Sjors M. Kas & Frank Rolfs & Catrin Lutz & Jessica K. Lee & Sjoerd Klarenbeek & Ian M. Silverman & Stefano Annunziato & Chang S. Chan & Sander R. Pie, 2022. "Truncated FGFR2 is a clinically actionable oncogene in multiple cancers," Nature, Nature, vol. 608(7923), pages 609-617, August.
    8. Daniel Zingg & Jinhyuk Bhin & Julia Yemelyanenko & Sjors M. Kas & Frank Rolfs & Catrin Lutz & Jessica K. Lee & Sjoerd Klarenbeek & Ian M. Silverman & Stefano Annunziato & Chang S. Chan & Sander R. Pie, 2022. "Publisher Correction: Truncated FGFR2 is a clinically actionable oncogene in multiple cancers," Nature, Nature, vol. 609(7929), pages 13-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Balkrishna Chaube & Kathryn M. Citrin & Mahnaz Sahraei & Abhishek K. Singh & Diego Saenz Urturi & Wen Ding & Richard W. Pierce & Raaisa Raaisa & Rebecca Cardone & Richard Kibbey & Carlos Fernández-Her, 2023. "Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Kaushal Asrani & Juhyung Woo & Adrianna A. Mendes & Ethan Schaffer & Thiago Vidotto & Clarence Rachel Villanueva & Kewen Feng & Lia Oliveira & Sanjana Murali & Hans B. Liu & Daniela C. Salles & Brando, 2022. "An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Amr Khalifa & Ana Guijarro & Silvia Ravera & Nadia Bertola & Maria Pia Adorni & Bianca Papotti & Lizzia Raffaghello & Roberto Benelli & Pamela Becherini & Asmaa Namatalla & Daniela Verzola & Daniele R, 2023. "Cyclic fasting bolsters cholesterol biosynthesis inhibitors’ anticancer activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Ziheng Chen & I-Lin Ho & Melinda Soeung & Er-Yen Yen & Jintan Liu & Liang Yan & Johnathon L. Rose & Sanjana Srinivasan & Shan Jiang & Q. Edward Chang & Ningping Feng & Jason P. Gay & Qi Wang & Jing Wa, 2023. "Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Nieves Montenegro-Navarro & Claudia García-Báez & Melissa García-Caballero, 2023. "Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Leland S. Hu & Fulvio D’Angelo & Taylor M. Weiskittel & Francesca P. Caruso & Shannon P. Fortin Ensign & Mylan R. Blomquist & Matthew J. Flick & Lujia Wang & Christopher P. Sereduk & Kevin Meng-Lin & , 2023. "Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Xianbing Zhu & Zheng Fu & Shary Y. Chen & Dionzie Ong & Giulio Aceto & Rebecca Ho & Jutta Steinberger & Anie Monast & Virginie Pilon & Eunice Li & Monica Ta & Kyle Ching & Bianca N. Adams & Gian L. Ne, 2023. "Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Tea Pemovska & Johannes W. Bigenzahn & Ismet Srndic & Alexander Lercher & Andreas Bergthaler & Adrián César-Razquin & Felix Kartnig & Christoph Kornauth & Peter Valent & Philipp B. Staber & Giulio Sup, 2021. "Metabolic drug survey highlights cancer cell dependencies and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    12. Antonio De Falco & Francesca Caruso & Xiao-Dong Su & Antonio Iavarone & Michele Ceccarelli, 2023. "A variational algorithm to detect the clonal copy number substructure of tumors from scRNA-seq data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Marc Hennequart & Christiaan F. Labuschagne & Mylène Tajan & Steven E. Pilley & Eric C. Cheung & Nathalie M. Legrave & Paul C. Driscoll & Karen H. Vousden, 2021. "The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47514-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.