IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26395-5.html
   My bibliography  Save this article

The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells

Author

Listed:
  • Marc Hennequart

    (The Francis Crick Institute)

  • Christiaan F. Labuschagne

    (The Francis Crick Institute)

  • Mylène Tajan

    (The Francis Crick Institute)

  • Steven E. Pilley

    (The Francis Crick Institute)

  • Eric C. Cheung

    (The Francis Crick Institute)

  • Nathalie M. Legrave

    (The Francis Crick Institute)

  • Paul C. Driscoll

    (The Francis Crick Institute)

  • Karen H. Vousden

    (The Francis Crick Institute)

Abstract

Serine is a non-essential amino acid that is critical for tumour proliferation and depletion of circulating serine results in reduced tumour growth and increased survival in various cancer models. While many cancer cells cultured in a standard tissue culture medium depend on exogenous serine for optimal growth, here we report that these cells are less sensitive to serine/glycine depletion in medium containing physiological levels of metabolites. The lower requirement for exogenous serine under these culture conditions reflects both increased de novo serine synthesis and the use of hypoxanthine (not present in the standard medium) to support purine synthesis. Limiting serine availability leads to increased uptake of extracellular hypoxanthine, sparing available serine for other pathways such as glutathione synthesis. Taken together these results improve our understanding of serine metabolism in physiologically relevant nutrient conditions and allow us to predict interventions that may enhance the therapeutic response to dietary serine/glycine limitation.

Suggested Citation

  • Marc Hennequart & Christiaan F. Labuschagne & Mylène Tajan & Steven E. Pilley & Eric C. Cheung & Nathalie M. Legrave & Paul C. Driscoll & Karen H. Vousden, 2021. "The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26395-5
    DOI: 10.1038/s41467-021-26395-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26395-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26395-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mylène Tajan & Marc Hennequart & Eric C. Cheung & Fabio Zani & Andreas K. Hock & Nathalie Legrave & Oliver D. K. Maddocks & Rachel A. Ridgway & Dimitris Athineos & Alejandro Suárez-Bonnet & Robert L. , 2021. "Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Kıvanç Birsoy & Richard Possemato & Franziska K. Lorbeer & Erol C. Bayraktar & Prathapan Thiru & Burcu Yucel & Tim Wang & Walter W. Chen & Clary B. Clish & David M. Sabatini, 2014. "Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides," Nature, Nature, vol. 508(7494), pages 108-112, April.
    3. Richard Possemato & Kevin M. Marks & Yoav D. Shaul & Michael E. Pacold & Dohoon Kim & Kıvanç Birsoy & Shalini Sethumadhavan & Hin-Koon Woo & Hyun G. Jang & Abhishek K. Jha & Walter W. Chen & Francesca, 2011. "Functional genomics reveal that the serine synthesis pathway is essential in breast cancer," Nature, Nature, vol. 476(7360), pages 346-350, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camilla Tombari & Alessandro Zannini & Rebecca Bertolio & Silvia Pedretti & Matteo Audano & Luca Triboli & Valeria Cancila & Davide Vacca & Manuel Caputo & Sara Donzelli & Ilenia Segatto & Simone Vodr, 2023. "Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Gabrielle Manteaux & Alix Amsel & Blanche Riquier-Morcant & Jaime Prieto Romero & Laurie Gayte & Benjamin Fourneaux & Marion Larroque & Nadège Gruel & Chloé Quignot & Gaelle Perot & Solenn Jacq & Madi, 2024. "A metabolic crosstalk between liposarcoma and muscle sustains tumor growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Nicole Kiweler & Catherine Delbrouck & Vitaly I. Pozdeev & Laura Neises & Leticia Soriano-Baguet & Kim Eiden & Feng Xian & Mohaned Benzarti & Lara Haase & Eric Koncina & Maryse Schmoetten & Christian , 2022. "Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Kui Wang & Li Luo & Shuyue Fu & Mao Wang & Zihao Wang & Lixia Dong & Xingyun Wu & Lunzhi Dai & Yong Peng & Guobo Shen & Hai-Ning Chen & Edouard Collins Nice & Xiawei Wei & Canhua Huang, 2023. "PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Xianbing Zhu & Zheng Fu & Shary Y. Chen & Dionzie Ong & Giulio Aceto & Rebecca Ho & Jutta Steinberger & Anie Monast & Virginie Pilon & Eunice Li & Monica Ta & Kyle Ching & Bianca N. Adams & Gian L. Ne, 2023. "Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Tom Nyen & Mélanie Planque & Lilian Wagensveld & Joao A. G. Duarte & Esther A. Zaal & Ali Talebi & Matteo Rossi & Pierre-René Körner & Lara Rizzotto & Stijn Moens & Wout Wispelaere & Regina E. M. Baid, 2022. "Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Yuanli Zhen & Kai Liu & Lei Shi & Simran Shah & Qin Xu & Haley Ellis & Eranga R. Balasooriya & Johannes Kreuzer & Robert Morris & Albert S. Baldwin & Dejan Juric & Wilhelm Haas & Nabeel Bardeesy, 2024. "FGFR inhibition blocks NF-ĸB-dependent glucose metabolism and confers metabolic vulnerabilities in cholangiocarcinoma," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Li Luo & Xingyun Wu & Jiawu Fan & Lixia Dong & Mao Wang & Yan Zeng & Sijia Li & Wenyong Yang & Jingwen Jiang & Kui Wang, 2024. "FBXO7 ubiquitinates PRMT1 to suppress serine synthesis and tumor growth in hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Ziwei Dai & Weiyan Zheng & Jason W. Locasale, 2022. "Amino acid variability, tradeoffs and optimality in human diet," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Xin Yuan & Yanran Ma & Ruitian Gao & Shuya Cui & Yifan Wang & Botao Fa & Shiyang Ma & Ting Wei & Shuangge Ma & Zhangsheng Yu, 2024. "HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Emmanuel Benichou & Bolaji Seffou & Selin Topçu & Ophélie Renoult & Véronique Lenoir & Julien Planchais & Caroline Bonner & Catherine Postic & Carina Prip-Buus & Claire Pecqueur & Sandra Guilmeau & Ma, 2024. "The transcription factor ChREBP Orchestrates liver carcinogenesis by coordinating the PI3K/AKT signaling and cancer metabolism," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    14. Eirini Lionaki & Ilias Gkikas & Ioanna Daskalaki & Maria-Konstantina Ioannidi & Maria I. Klapa & Nektarios Tavernarakis, 2022. "Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26395-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.