IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47440-z.html
   My bibliography  Save this article

Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons

Author

Listed:
  • Xiaoting Zhou

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Central South University)

  • You-Kyung Lee

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Xianting Li

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Henry Kim

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Carlos Sanchez-Priego

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Xian Han

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital
    University of Tennessee Health Science Center)

  • Haiyan Tan

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Suiping Zhou

    (St. Jude Children’s Research Hospital)

  • Yingxue Fu

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Kerry Purtell

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Qian Wang

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Gay R. Holstein

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Beisha Tang

    (Central South University
    Central South University)

  • Junmin Peng

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Nan Yang

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Zhenyu Yue

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

Abstract

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.

Suggested Citation

  • Xiaoting Zhou & You-Kyung Lee & Xianting Li & Henry Kim & Carlos Sanchez-Priego & Xian Han & Haiyan Tan & Suiping Zhou & Yingxue Fu & Kerry Purtell & Qian Wang & Gay R. Holstein & Beisha Tang & Junmin, 2024. "Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47440-z
    DOI: 10.1038/s41467-024-47440-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47440-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47440-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Taichi Hara & Kenji Nakamura & Makoto Matsui & Akitsugu Yamamoto & Yohko Nakahara & Rika Suzuki-Migishima & Minesuke Yokoyama & Kenji Mishima & Ichiro Saito & Hideyuki Okano & Noboru Mizushima, 2006. "Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice," Nature, Nature, vol. 441(7095), pages 885-889, June.
    2. Joseph D. Mancias & Xiaoxu Wang & Steven P. Gygi & J. Wade Harper & Alec C. Kimmelman, 2014. "Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy," Nature, Nature, vol. 509(7498), pages 105-109, May.
    3. Masaaki Komatsu & Satoshi Waguri & Tomoki Chiba & Shigeo Murata & Jun-ichi Iwata & Isei Tanida & Takashi Ueno & Masato Koike & Yasuo Uchiyama & Eiki Kominami & Keiji Tanaka, 2006. "Loss of autophagy in the central nervous system causes neurodegeneration in mice," Nature, Nature, vol. 441(7095), pages 880-884, June.
    4. Christian Behrends & Mathew E. Sowa & Steven P. Gygi & J. Wade Harper, 2010. "Network organization of the human autophagy system," Nature, Nature, vol. 466(7302), pages 68-76, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra K. Davies & Julian E. Alecu & Marvin Ziegler & Catherine G. Vasilopoulou & Fabrizio Merciai & Hellen Jumo & Wardiya Afshar-Saber & Mustafa Sahin & Darius Ebrahimi-Fakhari & Georg H. H. Borne, 2022. "AP-4-mediated axonal transport controls endocannabinoid production in neurons," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Catherine J. Greene & Jenny A. Nguyen & Samuel M. Cheung & Corey R. Arnold & Dale R. Balce & Ya Ting Wang & Adrian Soderholm & Neil McKenna & Devin Aggarwal & Rhiannon I. Campden & Benjamin W. Ewanchu, 2022. "Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Afshin Saffari & Barbara Brechmann & Cedric Böger & Wardiya Afshar Saber & Hellen Jumo & Dosh Whye & Delaney Wood & Lara Wahlster & Julian E. Alecu & Marvin Ziegler & Marlene Scheffold & Kellen Winden, 2024. "High-content screening identifies a small molecule that restores AP-4-dependent protein trafficking in neuronal models of AP-4-associated hereditary spastic paraplegia," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Barbara Baldo & Rana Soylu & Åsa Petersén, 2013. "Maintenance of Basal Levels of Autophagy in Huntington’s Disease Mouse Models Displaying Metabolic Dysfunction," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.
    5. Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    6. Hong-Wen Tang & Kerstin Spirohn & Yanhui Hu & Tong Hao & István A. Kovács & Yue Gao & Richard Binari & Donghui Yang-Zhou & Kenneth H. Wan & Joel S. Bader & Dawit Balcha & Wenting Bian & Benjamin W. Bo, 2023. "Next-generation large-scale binary protein interaction network for Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Wei Yang & Bo Mu & Jing You & Chenyu Tian & Huachao Bin & Zhiqiang Xu & Liting Zhang & Ronggang Ma & Ming Wu & Guo Zhang & Chong Huang & Linli Li & Zhenhua Shao & Lunzhi Dai & Laurent Désaubry & Sheng, 2022. "Non-classical ferroptosis inhibition by a small molecule targeting PHB2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Yoshito Minami & Atsushi Hoshino & Yusuke Higuchi & Masahide Hamaguchi & Yusaku Kaneko & Yuhei Kirita & Shunta Taminishi & Toshiyuki Nishiji & Akiyuki Taruno & Michiaki Fukui & Zoltan Arany & Satoaki , 2023. "Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Timothy C Matisziw & Tony H Grubesic & Junyu Guo, 2012. "Robustness Elasticity in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    10. Yu Guo & Minjie Shen & Qiping Dong & Natasha M. Méndez-Albelo & Sabrina X. Huang & Carissa L. Sirois & Jonathan Le & Meng Li & Ezra D. Jarzembowski & Keegan A. Schoeller & Michael E. Stockton & Vaness, 2023. "Elevated levels of FMRP-target MAP1B impair human and mouse neuronal development and mouse social behaviors via autophagy pathway," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    11. Xinyi Shan & Jiahuan Li & Jiahao Liu & Baoli Feng & Ting Zhang & Qian Liu & Huixin Ma & Honghong Wu & Hao Wu, 2023. "Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Fabian Hoelzgen & Thuy T. P. Nguyen & Elina Klukin & Mohamed Boumaiza & Ayush K. Srivastava & Elizabeth Y. Kim & Ran Zalk & Anat Shahar & Sagit Cohen-Schwartz & Esther G. Meyron-Holtz & Fadi Bou-Abdal, 2024. "Structural basis for the intracellular regulation of ferritin degradation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Emmanouela Kallergi & Akrivi-Dimitra Daskalaki & Angeliki Kolaxi & Come Camus & Evangelia Ioannou & Valentina Mercaldo & Per Haberkant & Frank Stein & Kyriaki Sidiropoulou & Yannis Dalezios & Mikhail , 2022. "Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice," Nature Communications, Nature, vol. 13(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47440-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.