IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v466y2010i7302d10.1038_nature09204.html
   My bibliography  Save this article

Network organization of the human autophagy system

Author

Listed:
  • Christian Behrends

    (Harvard Medical School, Boston, Massachusetts 02115, USA)

  • Mathew E. Sowa

    (Harvard Medical School, Boston, Massachusetts 02115, USA)

  • Steven P. Gygi

    (Harvard Medical School, Boston, Massachusetts 02115, USA)

  • J. Wade Harper

    (Harvard Medical School, Boston, Massachusetts 02115, USA)

Abstract

Autophagy, the process by which proteins and organelles are sequestered in autophagosomal vesicles and delivered to the lysosome/vacuole for degradation, provides a primary route for turnover of stable and defective cellular proteins. Defects in this system are linked with numerous human diseases. Although conserved protein kinase, lipid kinase and ubiquitin-like protein conjugation subnetworks controlling autophagosome formation and cargo recruitment have been defined, our understanding of the global organization of this system is limited. Here we report a proteomic analysis of the autophagy interaction network in human cells under conditions of ongoing (basal) autophagy, revealing a network of 751 interactions among 409 candidate interacting proteins with extensive connectivity among subnetworks. Many new autophagy interaction network components have roles in vesicle trafficking, protein or lipid phosphorylation and protein ubiquitination, and affect autophagosome number or flux when depleted by RNA interference. The six ATG8 orthologues in humans (MAP1LC3/GABARAP proteins) interact with a cohort of 67 proteins, with extensive binding partner overlap between family members, and frequent involvement of a conserved surface on ATG8 proteins known to interact with LC3-interacting regions in partner proteins. These studies provide a global view of the mammalian autophagy interaction landscape and a resource for mechanistic analysis of this critical protein homeostasis pathway.

Suggested Citation

  • Christian Behrends & Mathew E. Sowa & Steven P. Gygi & J. Wade Harper, 2010. "Network organization of the human autophagy system," Nature, Nature, vol. 466(7302), pages 68-76, July.
  • Handle: RePEc:nat:nature:v:466:y:2010:i:7302:d:10.1038_nature09204
    DOI: 10.1038/nature09204
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09204
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Guo & Minjie Shen & Qiping Dong & Natasha M. Méndez-Albelo & Sabrina X. Huang & Carissa L. Sirois & Jonathan Le & Meng Li & Ezra D. Jarzembowski & Keegan A. Schoeller & Michael E. Stockton & Vaness, 2023. "Elevated levels of FMRP-target MAP1B impair human and mouse neuronal development and mouse social behaviors via autophagy pathway," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Timothy C Matisziw & Tony H Grubesic & Junyu Guo, 2012. "Robustness Elasticity in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    3. Xiaoting Zhou & You-Kyung Lee & Xianting Li & Henry Kim & Carlos Sanchez-Priego & Xian Han & Haiyan Tan & Suiping Zhou & Yingxue Fu & Kerry Purtell & Qian Wang & Gay R. Holstein & Beisha Tang & Junmin, 2024. "Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Hong-Wen Tang & Kerstin Spirohn & Yanhui Hu & Tong Hao & István A. Kovács & Yue Gao & Richard Binari & Donghui Yang-Zhou & Kenneth H. Wan & Joel S. Bader & Dawit Balcha & Wenting Bian & Benjamin W. Bo, 2023. "Next-generation large-scale binary protein interaction network for Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:466:y:2010:i:7302:d:10.1038_nature09204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.