IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47276-7.html
   My bibliography  Save this article

Decreased Indian Ocean Dipole variability under prolonged greenhouse warming

Author

Listed:
  • Soong-Ki Kim

    (Yonsei University)

  • Hyo-Jin Park

    (Yonsei University
    Yonsei University)

  • Soon-Il An

    (Yonsei University
    Yonsei University
    Pohang University of Science and Technology (POSTECH))

  • Chao Liu

    (Yonsei University)

  • Wenju Cai

    (Ocean University of China
    Laoshan Laboratory
    Xiamen University
    Chinese Academy of Sciences)

  • Agus Santoso

    (CSIRO
    The University of New South Wales
    Ocean University of China)

  • Jong-Seong Kug

    (Seoul National University)

Abstract

The Indian Ocean Dipole (IOD) is a major climate variability mode that substantially influences weather extremes and climate patterns worldwide. However, the response of IOD variability to anthropogenic global warming remains highly uncertain. The latest IPCC Sixth Assessment Report concluded that human influences on IOD variability are not robustly detected in observations and twenty-first century climate-model projections. Here, using millennial-length climate simulations, we disentangle forced response and internal variability in IOD change and show that greenhouse warming robustly suppresses IOD variability. On a century time scale, internal variability overwhelms the forced change in IOD, leading to a widespread response in IOD variability. This masking effect is mainly caused by a remote influence of the El Niño–Southern Oscillation. However, on a millennial time scale, nearly all climate models show a long-term weakening trend in IOD variability by greenhouse warming. Our results provide compelling evidence for a human influence on the IOD.

Suggested Citation

  • Soong-Ki Kim & Hyo-Jin Park & Soon-Il An & Chao Liu & Wenju Cai & Agus Santoso & Jong-Seong Kug, 2024. "Decreased Indian Ocean Dipole variability under prolonged greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47276-7
    DOI: 10.1038/s41467-024-47276-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47276-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47276-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. H. Saji & B. N. Goswami & P. N. Vinayachandran & T. Yamagata, 1999. "A dipole mode in the tropical Indian Ocean," Nature, Nature, vol. 401(6751), pages 360-363, September.
    2. Christopher W. Callahan & Chen Chen & Maria Rugenstein & Jonah Bloch-Johnson & Shuting Yang & Elisabeth J. Moyer, 2021. "Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming," Nature Climate Change, Nature, vol. 11(9), pages 752-757, September.
    3. Wenju Cai & Kai Yang & Lixin Wu & Gang Huang & Agus Santoso & Benjamin Ng & Guojian Wang & Toshio Yamagata, 2021. "Opposite response of strong and moderate positive Indian Ocean Dipole to global warming," Nature Climate Change, Nature, vol. 11(1), pages 27-32, January.
    4. Wenju Cai & Agus Santoso & Guojian Wang & Evan Weller & Lixin Wu & Karumuri Ashok & Yukio Masumoto & Toshio Yamagata, 2014. "Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming," Nature, Nature, vol. 510(7504), pages 254-258, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Guojian Wang & Wenju Cai & Agus Santoso, 2024. "Variability of the Indian Ocean Dipole post-2100 reverses to a reduction despite persistent global warming," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    3. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Damette, Olivier & Mathonnat, Clément & Thavard, Julien, 2024. "Climate and sovereign risk: The Latin American experience with strong ENSO events," World Development, Elsevier, vol. 178(C).
    5. Omid Alizadeh, 2022. "Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation," Climatic Change, Springer, vol. 174(3), pages 1-15, October.
    6. Tomomichi Ogata & Marie-Fanny Racault & Masami Nonaka & Swadhin Behera, 2021. "Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    7. Sahil Sharma & Kyung-Ja Ha & Ryohei Yamaguchi & Keith B. Rodgers & Axel Timmermann & Eui-Seok Chung, 2023. "Future Indian Ocean warming patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Li Zhang & Xuya Ren & Wenju Cai & Xichen Li & Lixin Wu, 2024. "Weakened western Indian Ocean dominance on Antarctic sea ice variability in a changing climate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Nisa Anil & M. R. Ramesh Kumar & R. Sajeev & P. K. Saji, 2016. "Role of distinct flavours of IOD events on Indian summer monsoon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1317-1326, June.
    11. Hosmay Lopez & Sang-Ki Lee & Dongmin Kim & Andrew T. Wittenberg & Sang-Wook Yeh, 2022. "Projections of faster onset and slower decay of El Niño in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Aguilar, Arturo & Vicarelli, Marta, 2022. "El Niño and children: Medium-term effects of early-life weather shocks on cognitive and health outcomes," World Development, Elsevier, vol. 150(C).
    13. Akio Kitoh, 2007. "Variability of Indian monsoon-ENSO relationship in a 1000-year MRI-CGCM2.2 simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(2), pages 261-272, August.
    14. Iskhaq Iskandar & Deni Okta Lestari & Agus Dwi Saputra & Riza Yuliratno Setiawan & Anindya Wirasatriya & Raden Dwi Susanto & Wijaya Mardiansyah & Muhammad Irfan & Rozirwan & Joga Dharma Setiawan & Kun, 2022. "Extreme Positive Indian Ocean Dipole in 2019 and Its Impact on Indonesia," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    15. Anni Arumsari Fitriany & Piotr J. Flatau & Khoirunurrofik Khoirunurrofik & Nelly Florida Riama, 2021. "Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    16. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    17. Yadav Prasad Joshi & Eun-Hye Kim & Jong-Hun Kim & Ho Kim & Hae-Kwan Cheong, 2016. "Associations between Meteorological Factors and Aseptic Meningitis in Six Metropolitan Provinces of the Republic of Korea," IJERPH, MDPI, vol. 13(12), pages 1-12, November.
    18. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    19. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    20. Kavya Johny & Maya L. Pai & S. Adarsh, 2022. "Investigating the multiscale teleconnections of Madden–Julian oscillation and monthly rainfall using time-dependent intrinsic cross-correlation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1795-1822, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47276-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.