IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i1d10.1038_s41558-020-00943-1.html
   My bibliography  Save this article

Opposite response of strong and moderate positive Indian Ocean Dipole to global warming

Author

Listed:
  • Wenju Cai

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology
    Center for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere)

  • Kai Yang

    (Chinese Academy of Sciences)

  • Lixin Wu

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology)

  • Gang Huang

    (Chinese Academy of Sciences
    Qingdao National Laboratory for Marine Science and Technology)

  • Agus Santoso

    (Center for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere
    The University of New South Wales)

  • Benjamin Ng

    (Center for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere)

  • Guojian Wang

    (Ocean University of China and Qingdao National Laboratory for Marine Science and Technology
    Center for Southern Hemisphere Oceans Research (CSHOR), CSIRO Oceans and Atmosphere)

  • Toshio Yamagata

    (Application Laboratory, JAMSTEC)

Abstract

A strong positive Indian Ocean Dipole (pIOD) induces weather extremes such as the 2019 Australian bushfires and African floods. The impact is influenced by sea surface temperature (SST), yet models disagree on how pIOD SST may respond to greenhouse warming. Here we find increased SST variability of strong pIOD events, with strong equatorial eastern Indian Ocean cool anomalies, but decreased variability of moderate pIOD events, dominated by western warm anomalies. This opposite response is detected in the Coupled Model Inter-comparison Project (CMIP5 and CMIP6) climate models that simulate the two pIOD regimes. Under greenhouse warming, the lower troposphere warms faster than the surface, limiting Ekman pumping that drives the moderate pIOD warm anomalies; however, faster surface warming in the equatorial western region favours atmospheric convection in the west, strengthening equatorial nonlinear advection that forces the strong pIOD cool anomalies. Climate extremes seen in 2019 are therefore likely to occur more frequently under greenhouse warming.

Suggested Citation

  • Wenju Cai & Kai Yang & Lixin Wu & Gang Huang & Agus Santoso & Benjamin Ng & Guojian Wang & Toshio Yamagata, 2021. "Opposite response of strong and moderate positive Indian Ocean Dipole to global warming," Nature Climate Change, Nature, vol. 11(1), pages 27-32, January.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:1:d:10.1038_s41558-020-00943-1
    DOI: 10.1038/s41558-020-00943-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-00943-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-00943-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Tomomichi Ogata & Marie-Fanny Racault & Masami Nonaka & Swadhin Behera, 2021. "Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    4. Soong-Ki Kim & Hyo-Jin Park & Soon-Il An & Chao Liu & Wenju Cai & Agus Santoso & Jong-Seong Kug, 2024. "Decreased Indian Ocean Dipole variability under prolonged greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Sahil Sharma & Kyung-Ja Ha & Ryohei Yamaguchi & Keith B. Rodgers & Axel Timmermann & Eui-Seok Chung, 2023. "Future Indian Ocean warming patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Li Zhang & Xuya Ren & Wenju Cai & Xichen Li & Lixin Wu, 2024. "Weakened western Indian Ocean dominance on Antarctic sea ice variability in a changing climate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Guojian Wang & Wenju Cai & Agus Santoso, 2024. "Variability of the Indian Ocean Dipole post-2100 reverses to a reduction despite persistent global warming," Nature Communications, Nature, vol. 15(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:1:d:10.1038_s41558-020-00943-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.