IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47272-x.html
   My bibliography  Save this article

Plasmids in the human gut reveal neutral dispersal and recombination that is overpowered by inflammatory diseases

Author

Listed:
  • Alvah Zorea

    (Ben-Gurion University of the Negev
    Ben-Gurion University of the Negev
    Ben-Gurion University of the Negev)

  • David Pellow

    (Tel Aviv University)

  • Liron Levin

    (Ben-Gurion University of the Negev)

  • Shai Pilosof

    (Ben-Gurion University of the Negev
    Ben-Gurion University of the Negev)

  • Jonathan Friedman

    (Hebrew University)

  • Ron Shamir

    (Tel Aviv University)

  • Itzhak Mizrahi

    (Ben-Gurion University of the Negev
    Ben-Gurion University of the Negev
    Ben-Gurion University of the Negev)

Abstract

Plasmids are pivotal in driving bacterial evolution through horizontal gene transfer. Here, we investigated 3467 human gut microbiome samples across continents and disease states, analyzing 11,086 plasmids. Our analyses reveal that plasmid dispersal is predominantly stochastic, indicating neutral processes as the primary driver of their wide distribution. We find that only 20-25% of plasmid DNA is being selected in various disease states, constraining its distribution across hosts. Selective pressures shape specific plasmid segments with distinct ecological functions, influenced by plasmid mobilization lifestyle, antibiotic usage, and inflammatory gut diseases. Notably, these elements are more commonly shared within groups of individuals with similar health conditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic location across continents. These segments contain essential genes such as iron transport mechanisms- a distinctive gut signature of IBD that impacts the severity of inflammation. Our findings shed light on mechanisms driving plasmid dispersal and selection in the human gut, highlighting their role as carriers of vital gene pools impacting bacterial hosts and ecosystem dynamics.

Suggested Citation

  • Alvah Zorea & David Pellow & Liron Levin & Shai Pilosof & Jonathan Friedman & Ron Shamir & Itzhak Mizrahi, 2024. "Plasmids in the human gut reveal neutral dispersal and recombination that is overpowered by inflammatory diseases," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47272-x
    DOI: 10.1038/s41467-024-47272-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47272-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47272-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suzanne Humphrey & Álvaro San Millán & Macarena Toll-Riera & John Connolly & Alejandra Flor-Duro & John Chen & Carles Ubeda & R. Craig MacLean & José R. Penadés, 2021. "Staphylococcal phages and pathogenicity islands drive plasmid evolution," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Emmanuelle Le Chatelier & Trine Nielsen & Junjie Qin & Edi Prifti & Falk Hildebrand & Gwen Falony & Mathieu Almeida & Manimozhiyan Arumugam & Jean-Michel Batto & Sean Kennedy & Pierre Leonard & Junhua, 2013. "Richness of human gut microbiome correlates with metabolic markers," Nature, Nature, vol. 500(7464), pages 541-546, August.
    3. Mislav Acman & Lucy van Dorp & Joanne M. Santini & Francois Balloux, 2020. "Large-scale network analysis captures biological features of bacterial plasmids," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Tanita Wein & Nils F. Hülter & Itzhak Mizrahi & Tal Dagan, 2019. "Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Di Tommaso & Antonio Gasbarrini & Francesca Romana Ponziani, 2021. "Intestinal Barrier in Human Health and Disease," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    2. Patricia A. Janulewicz & Ratanesh K. Seth & Jeffrey M. Carlson & Joy Ajama & Emily Quinn & Timothy Heeren & Nancy Klimas & Steven M. Lasley & Ronnie D. Horner & Kimberly Sullivan & Saurabh Chatterjee, 2019. "The Gut-Microbiome in Gulf War Veterans: A Preliminary Report," IJERPH, MDPI, vol. 16(19), pages 1-14, October.
    3. Alice Risely & Arthur Newbury & Thibault Stalder & Benno I. Simmons & Eva M. Top & Angus Buckling & Dirk Sanders, 2024. "Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zengliang Jiang & Lai-bao Zhuo & Yan He & Yuanqing Fu & Luqi Shen & Fengzhe Xu & Wanglong Gou & Zelei Miao & Menglei Shuai & Yuhui Liang & Congmei Xiao & Xinxiu Liang & Yunyi Tian & Jiali Wang & Jun T, 2022. "The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Wanli He & Jakob Russel & Franziska Klincke & Joseph Nesme & Søren Johannes Sørensen, 2024. "Insights into the ecology of the infant gut plasmidome," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wang, Benyu & Gu, Yijun & Zheng, Diwen, 2022. "Community detection in error-prone environments based on particle cooperation and competition with distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Samuel Lipworth & William Matlock & Liam Shaw & Karina-Doris Vihta & Gillian Rodger & Kevin Chau & Leanne Barker & Sophie George & James Kavanagh & Timothy Davies & Alison Vaughan & Monique Andersson , 2024. "The plasmidome associated with Gram-negative bloodstream infections: A large-scale observational study using complete plasmid assemblies," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Alessandra N. Bazzano & Kaitlin S. Potts & Lydia A. Bazzano & John B. Mason, 2017. "The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries," IJERPH, MDPI, vol. 14(4), pages 1-19, April.
    9. Miles V. Rouches & Yasu Xu & Louis Brian Georges Cortes & Guillaume Lambert, 2022. "A plasmid system with tunable copy number," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Sigal Leviatan & Saar Shoer & Daphna Rothschild & Maria Gorodetski & Eran Segal, 2022. "An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Qiu E. Yang & Xiaodan Ma & Minchun Li & Mengshi Zhao & Lingshuang Zeng & Minzhen He & Hui Deng & Hanpeng Liao & Christopher Rensing & Ville-Petri Friman & Shungui Zhou & Timothy R. Walsh, 2024. "Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Yinyin Ma & Josep Ramoneda & David R. Johnson, 2023. "Timing of antibiotic administration determines the spread of plasmid-encoded antibiotic resistance during microbial range expansion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Daphna Rothschild & Sigal Leviatan & Ariel Hanemann & Yossi Cohen & Omer Weissbrod & Eran Segal, 2022. "An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-20, March.
    14. Jim Parker & Claire O’Brien & Jason Hawrelak & Felice L. Gersh, 2022. "Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    15. Julien Tap & Franck Lejzerowicz & Aurélie Cotillard & Matthieu Pichaud & Daniel McDonald & Se Jin Song & Rob Knight & Patrick Veiga & Muriel Derrien, 2023. "Global branches and local states of the human gut microbiome define associations with environmental and intrinsic factors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Jia, Jing & Zhao, Zhong & Yang, Jingen & Zeb, Anwar, 2024. "Parameter estimation and global sensitivity analysis of a bacterial-plasmid model with impulsive drug treatment," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    17. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Małgorzata Moszak & Monika Szulińska & Marta Walczak-Gałęzewska & Paweł Bogdański, 2021. "Nutritional Approach Targeting Gut Microbiota in NAFLD—To Date," IJERPH, MDPI, vol. 18(4), pages 1-32, February.
    19. Lauren C Mead & Alison M Hill & Sharayah Carter & Alison M Coates, 2021. "The Effect of Nut Consumption on Diet Quality, Cardiometabolic and Gastrointestinal Health in Children: A Systematic Review of Randomized Controlled Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    20. Alba Ordoñez-Rodriguez & Pablo Roman & Lola Rueda-Ruzafa & Ana Campos-Rios & Diana Cardona, 2023. "Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review," IJERPH, MDPI, vol. 20(5), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47272-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.