IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007361.html
   My bibliography  Save this article

Community detection in error-prone environments based on particle cooperation and competition with distance dynamics

Author

Listed:
  • Wang, Benyu
  • Gu, Yijun
  • Zheng, Diwen

Abstract

Community detection has attracted a lot of attention in recent decades for understanding structures and functions of complex networks. A plethora of exhaustive studies have proved that community detection methods based only on topology information tend to obtain poor community partition results. Several methods that utilize prior information to improve performance are proposed. However, most of the previous work ignores the influence of the noise from prior information. Prior information can be uncertain, imprecise, or even noisy. The reliability of prior information is a crucial factor, as wrong prior information may propagate throughout the whole network, reducing community detection effectiveness. In this paper, by combining particle cooperation and competition with distance dynamics, we propose a novel algorithm for community detection in error-prone environments (PCCDD), which helps to make full use of prior information. Finally, we conduct extensive experiments on artificial and real-world networks compared with state-of-the-art algorithms. Experimental results show that the PCCDD algorithm improves the accuracy of community detection and has good robustness in error-prone environments for detecting and preventing error propagation. Moreover, the algorithm can also be applied well to large-scale networks with unbalanced community structures due to linear time complexity.

Suggested Citation

  • Wang, Benyu & Gu, Yijun & Zheng, Diwen, 2022. "Community detection in error-prone environments based on particle cooperation and competition with distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007361
    DOI: 10.1016/j.physa.2022.128178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007361
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoyu Li & Chao Gao & Songxin Wang & Zhen Wang & Chen Liu & Xianghua Li, 2021. "A new nature-inspired optimization for community discovery in complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-14, July.
    2. Liu, Dong & Liu, Xiao & Wang, Wenjun & Bai, Hongyu, 2014. "Semi-supervised community detection based on discrete potential theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 173-182.
    3. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    5. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    6. Aghaalizadeh, Saeid & Afshord, Saeid Taghavi & Bouyer, Asgarali & Anari, Babak, 2021. "A three-stage algorithm for local community detection based on the high node importance ranking in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Mislav Acman & Lucy van Dorp & Joanne M. Santini & Francois Balloux, 2020. "Large-scale network analysis captures biological features of bacterial plasmids," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Jia Wang & Zhiping Wang & Ping Yu & Peiwen Wang, 2022. "The SEIR Dynamic Evolutionary Model with Markov Chains in Hyper Networks," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    2. Chen, Chunchun & Zhu, Wenjie & Peng, Bo, 2022. "Differentiated graph regularized non-negative matrix factorization for semi-supervised community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Jing Yang & Jun Wang & Mengyang Gao, 2023. "Community Evolution Analysis Driven by Tag Events: The Special Perspective of New Tags," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    4. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    5. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    6. Kazemzadeh, Farzaneh & Safaei, Ali Asghar & Mirzarezaee, Mitra, 2022. "Influence maximization in social networks using effective community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    7. Jiashun Jin & Zheng Tracy Ke & Shengming Luo, 2022. "Improvements on SCORE, Especially for Weak Signals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 127-162, June.
    8. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    9. Saxena, Rakhi & Kaur, Sharanjit & Bhatnagar, Vasudha, 2019. "Identifying similar networks using structural hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    10. Li, Yafang & Jia, Caiyan & Li, Jianqiang & Wang, Xiaoyang & Yu, Jian, 2018. "Enhanced semi-supervised community detection with active node and link selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 219-232.
    11. Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020. "Detecting Latent Communities in Network Formation Models," Economics and Statistics Working Papers 12-2020, Singapore Management University, School of Economics.
    12. Luca Braghieri & Ro'ee Levy & Alexey Makarin, 2022. "Social Media and Mental Health," American Economic Review, American Economic Association, vol. 112(11), pages 3660-3693, November.
    13. Tasgin, Mursel & Bingol, Haluk O., 2018. "Community detection using preference networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 126-136.
    14. Yuan, Wei-Guo & Liu, Yun, 2015. "A mixing evolution model for bidirectional microblog user networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 167-179.
    15. Karimi, Fariba & Ramenzoni, Verónica C. & Holme, Petter, 2014. "Structural differences between open and direct communication in an online community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 263-273.
    16. Yakir Berchenko & Jonathan D. Rosenblatt & Simon D. W. Frost, 2017. "Modeling and analyzing respondent‐driven sampling as a counting process," Biometrics, The International Biometric Society, vol. 73(4), pages 1189-1198, December.
    17. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    18. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Yu, Wei & Jiao, Pengfei & Wang, Wenjun & Yu, Yang & Chen, Xue & Pan, Lin, 2019. "A novel evolutionary clustering via the first-order varying information for dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 507-520.
    20. Hanbaek Lyu & Yacoub H. Kureh & Joshua Vendrow & Mason A. Porter, 2024. "Learning low-rank latent mesoscale structures in networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.