IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53832-y.html
   My bibliography  Save this article

Identification of gut microbiome features associated with host metabolic health in a large population-based cohort

Author

Listed:
  • Ayya Keshet

    (Weizmann Institute of Science
    Weizmann Institute of Science)

  • Eran Segal

    (Weizmann Institute of Science
    Weizmann Institute of Science)

Abstract

The complex relationship between the gut microbiome and host metabolic health has been an emerging research area. Several recent studies have highlighted the potential effects of the microbiome’s diversity, composition and metabolic production capabilities on Body Mass Index (BMI), liver health, glucose homeostasis and Type-2 Diabetes (T2D). The majority of these studies were constrained by relatively small cohorts, mostly focusing on individuals with metabolic disorders, limiting a comprehensive understanding of the microbiome’s role in metabolic health. Leveraging a large-scale, comprehensive cohort of nearly 9000 individuals, measured using Continuous Glucose Monitoring (CGM), Dual-energy X-ray absorptiometry (DXA) scan and liver Ultrasound (US) we examined the functional profile of the gut microbiome, and its relation to 38 metabolic health measures. We identified 145 unique bacterial pathways significantly correlated with metabolic health measures, with 86.9% of these showing significant associations with more than one metabolic health measure. Furthermore, 87,678 unique bacterial gene families were found to be significantly associated with at least one metabolic health measure. Notably, “key” bacterial pathways such as purine ribonucleosides degradation and anaerobic energy metabolism demonstrated multiple robust associations across various metabolic health measures, highlighting their potential roles in regulating metabolic processes. Our results remained largely unchanged after adjustments for nutritional habits and for BMI they were replicated in a geographically independent cohort. These insights pave the way for future research and potentially the development of microbiome-targeted interventions to enhance metabolic health.

Suggested Citation

  • Ayya Keshet & Eran Segal, 2024. "Identification of gut microbiome features associated with host metabolic health in a large population-based cohort," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53832-y
    DOI: 10.1038/s41467-024-53832-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53832-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53832-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helle Krogh Pedersen & Valborg Gudmundsdottir & Henrik Bjørn Nielsen & Tuulia Hyotylainen & Trine Nielsen & Benjamin A. H. Jensen & Kristoffer Forslund & Falk Hildebrand & Edi Prifti & Gwen Falony & E, 2016. "Human gut microbes impact host serum metabolome and insulin sensitivity," Nature, Nature, vol. 535(7612), pages 376-381, July.
    2. R. Gacesa & A. Kurilshikov & A. Vich Vila & T. Sinha & M. A. Y. Klaassen & L. A. Bolte & S. Andreu-Sánchez & L. Chen & V. Collij & S. Hu & J. A. M. Dekens & V. C. Lenters & J. R. Björk & J. C. Swarte , 2022. "Environmental factors shaping the gut microbiome in a Dutch population," Nature, Nature, vol. 604(7907), pages 732-739, April.
    3. Sigal Leviatan & Saar Shoer & Daphna Rothschild & Maria Gorodetski & Eran Segal, 2022. "An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Tadashi Takeuchi & Tetsuya Kubota & Yumiko Nakanishi & Hiroshi Tsugawa & Wataru Suda & Andrew Tae-Jun Kwon & Junshi Yazaki & Kazutaka Ikeda & Shino Nemoto & Yoshiki Mochizuki & Toshimori Kitami & Kats, 2023. "Gut microbial carbohydrate metabolism contributes to insulin resistance," Nature, Nature, vol. 621(7978), pages 389-395, September.
    5. Daphna Rothschild & Sigal Leviatan & Ariel Hanemann & Yossi Cohen & Omer Weissbrod & Eran Segal, 2022. "An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-20, March.
    6. Emmanuelle Le Chatelier & Trine Nielsen & Junjie Qin & Edi Prifti & Falk Hildebrand & Gwen Falony & Mathieu Almeida & Manimozhiyan Arumugam & Jean-Michel Batto & Sean Kennedy & Pierre Leonard & Junhua, 2013. "Richness of human gut microbiome correlates with metabolic markers," Nature, Nature, vol. 500(7464), pages 541-546, August.
    7. Junjie Qin & Yingrui Li & Zhiming Cai & Shenghui Li & Jianfeng Zhu & Fan Zhang & Suisha Liang & Wenwei Zhang & Yuanlin Guan & Dongqian Shen & Yangqing Peng & Dongya Zhang & Zhuye Jie & Wenxian Wu & Yo, 2012. "A metagenome-wide association study of gut microbiota in type 2 diabetes," Nature, Nature, vol. 490(7418), pages 55-60, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efrat Muller & Itamar Shiryan & Elhanan Borenstein, 2024. "Multi-omic integration of microbiome data for identifying disease-associated modules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Daphna Rothschild & Sigal Leviatan & Ariel Hanemann & Yossi Cohen & Omer Weissbrod & Eran Segal, 2022. "An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-20, March.
    3. Jim Parker & Claire O’Brien & Jason Hawrelak & Felice L. Gersh, 2022. "Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    4. Kristin M. Ham & Layne K. Bower & Shanping Li & Hernan Lorenzi & Safiatou Doumbo & Didier Doumtabe & Kassoum Kayentao & Aissata Ongoiba & Boubacar Traore & Peter D. Crompton & Nathan W. Schmidt, 2024. "The gut microbiome is associated with susceptibility to febrile malaria in Malian children," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Zengliang Jiang & Lai-bao Zhuo & Yan He & Yuanqing Fu & Luqi Shen & Fengzhe Xu & Wanglong Gou & Zelei Miao & Menglei Shuai & Yuhui Liang & Congmei Xiao & Xinxiu Liang & Yunyi Tian & Jiali Wang & Jun T, 2022. "The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Aibo Gao & Junlei Su & Ruixin Liu & Shaoqian Zhao & Wen Li & Xiaoqiang Xu & Danjie Li & Juan Shi & Bin Gu & Juan Zhang & Qi Li & Xiaolin Wang & Yifei Zhang & Yu Xu & Jieli Lu & Guang Ning & Jie Hong &, 2021. "Sexual dimorphism in glucose metabolism is shaped by androgen-driven gut microbiome," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Alessandra N. Bazzano & Kaitlin S. Potts & Lydia A. Bazzano & John B. Mason, 2017. "The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries," IJERPH, MDPI, vol. 14(4), pages 1-19, April.
    10. Sigal Leviatan & Saar Shoer & Daphna Rothschild & Maria Gorodetski & Eran Segal, 2022. "An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Wanting Dong & Xinyue Fan & Yaqiong Guo & Siyi Wang & Shulei Jia & Na Lv & Tao Yuan & Yuanlong Pan & Yong Xue & Xi Chen & Qian Xiong & Ruifu Yang & Weigang Zhao & Baoli Zhu, 2024. "An expanded database and analytical toolkit for identifying bacterial virulence factors and their associations with chronic diseases," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Natalia Di Tommaso & Antonio Gasbarrini & Francesca Romana Ponziani, 2021. "Intestinal Barrier in Human Health and Disease," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    13. Saar Shoer & Smadar Shilo & Anastasia Godneva & Orly Ben-Yacov & Michal Rein & Bat Chen Wolf & Maya Lotan-Pompan & Noam Bar & Ervin I. Weiss & Yael Houri-Haddad & Yitzhak Pilpel & Adina Weinberger & E, 2023. "Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Yonggan Sun & Qixing Nie & Shanshan Zhang & Huijun He & Sheng Zuo & Chunhua Chen & Jingrui Yang & Haihong Chen & Jielun Hu & Song Li & Jiaobo Cheng & Baojie Zhang & Zhitian Zheng & Shijie Pan & Ping H, 2023. "Parabacteroides distasonis ameliorates insulin resistance via activation of intestinal GPR109a," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Diego E. Sastre & Nazneen Sultana & Marcos V. A. S. Navarro & Maros Huliciak & Jonathan Du & Javier O. Cifuente & Maria Flowers & Xu Liu & Pete Lollar & Beatriz Trastoy & Marcelo E. Guerin & Eric J. S, 2024. "Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Lijuan Kong & Qijin Zhao & Xiaojing Jiang & Jinping Hu & Qian Jiang & Li Sheng & Xiaohong Peng & Shusen Wang & Yibing Chen & Yanjun Wan & Shaocong Hou & Xingfeng Liu & Chunxiao Ma & Yan Li & Li Quan &, 2024. "Trimethylamine N-oxide impairs β-cell function and glucose tolerance," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Can Cui & Susheela P. Singh & Ana‐Maria Staicu & Brian J. Reich, 2021. "Bayesian variable selection for high‐dimensional rank data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    18. Valerio Rosato & Mario Masarone & Marcello Dallio & Alessandro Federico & Andrea Aglitti & Marcello Persico, 2019. "NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome," IJERPH, MDPI, vol. 16(18), pages 1-26, September.
    19. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    20. Georges P. Schmartz & Jacqueline Rehner & Miriam J. Schuff & Leidy-Alejandra G. Molano & Sören L. Becker & Marcin Krawczyk & Azat Tagirdzhanov & Alexey Gurevich & Richard Francke & Rolf Müller & Veren, 2024. "Exploring microbial diversity and biosynthetic potential in zoo and wildlife animal microbiomes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53832-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.