IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47186-8.html
   My bibliography  Save this article

Quantum simulation of the bosonic Kitaev chain

Author

Listed:
  • Jamal H. Busnaina

    (University of Waterloo)

  • Zheng Shi

    (University of Waterloo)

  • Alexander McDonald

    (University of Chicago
    Université de Sherbrooke)

  • Dmytro Dubyna

    (University of Waterloo)

  • Ibrahim Nsanzineza

    (University of Waterloo)

  • Jimmy S. C. Hung

    (University of Waterloo)

  • C. W. Sandbo Chang

    (University of Waterloo)

  • Aashish A. Clerk

    (University of Chicago)

  • Christopher M. Wilson

    (University of Waterloo)

Abstract

Superconducting quantum circuits are a natural platform for quantum simulations of a wide variety of important lattice models describing topological phenomena, spanning condensed matter and high-energy physics. One such model is the bosonic analog of the well-known fermionic Kitaev chain, a 1D tight-binding model with both nearest-neighbor hopping and pairing terms. Despite being fully Hermitian, the bosonic Kitaev chain exhibits a number of striking features associated with non-Hermitian systems, including chiral transport and a dramatic sensitivity to boundary conditions known as the non-Hermitian skin effect. Here, using a multimode superconducting parametric cavity, we implement the bosonic Kitaev chain in synthetic dimensions. The lattice sites are mapped to frequency modes of the cavity, and the in situ tunable complex hopping and pairing terms are created by parametric pumping at the mode-difference and mode-sum frequencies, respectively. We experimentally demonstrate important precursors of nontrivial topology and the non-Hermitian skin effect in the bosonic Kitaev chain, including chiral transport, quadrature wavefunction localization, and sensitivity to boundary conditions. Our experiment is an important first step towards exploring genuine many-body non-Hermitian quantum dynamics.

Suggested Citation

  • Jamal H. Busnaina & Zheng Shi & Alexander McDonald & Dmytro Dubyna & Ibrahim Nsanzineza & Jimmy S. C. Hung & C. W. Sandbo Chang & Aashish A. Clerk & Christopher M. Wilson, 2024. "Quantum simulation of the bosonic Kitaev chain," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47186-8
    DOI: 10.1038/s41467-024-47186-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47186-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47186-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai Wang & Avik Dutt & Charles C. Wojcik & Shanhui Fan, 2021. "Topological complex-energy braiding of non-Hermitian bands," Nature, Nature, vol. 598(7879), pages 59-64, October.
    2. Javier Pino & Jesse J. Slim & Ewold Verhagen, 2022. "Non-Hermitian chiral phononics through optomechanically induced squeezing," Nature, Nature, vol. 606(7912), pages 82-87, June.
    3. Andrew J. Daley & Immanuel Bloch & Christian Kokail & Stuart Flannigan & Natalie Pearson & Matthias Troyer & Peter Zoller, 2022. "Practical quantum advantage in quantum simulation," Nature, Nature, vol. 607(7920), pages 667-676, July.
    4. Alexander McDonald & Aashish A. Clerk, 2020. "Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    2. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Zenghui Bao & Yan Li & Zhiling Wang & Jiahui Wang & Jize Yang & Haonan Xiong & Yipu Song & Yukai Wu & Hongyi Zhang & Luming Duan, 2024. "A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Grigory E. Astrakharchik & Luis A. Peña Ardila & Krzysztof Jachymski & Antonio Negretti, 2023. "Many-body bound states and induced interactions of charged impurities in a bosonic bath," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Zhujing Xu & Peng Ju & Xingyu Gao & Kunhong Shen & Zubin Jacob & Tongcang Li, 2022. "Observation and control of Casimir effects in a sphere-plate-sphere system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Evgeny Kozik, 2024. "Combinatorial summation of Feynman diagrams," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Yun-Hao Shi & Run-Qiu Yang & Zhongcheng Xiang & Zi-Yong Ge & Hao Li & Yong-Yi Wang & Kaixuan Huang & Ye Tian & Xiaohui Song & Dongning Zheng & Kai Xu & Rong-Gen Cai & Heng Fan, 2023. "Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Chitres Guria & Qi Zhong & Sahin Kaya Ozdemir & Yogesh S. S. Patil & Ramy El-Ganainy & Jack Gwynne Emmet Harris, 2024. "Resolving the topology of encircling multiple exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Zhen Li & Li-Wei Wang & Xulong Wang & Zhi-Kang Lin & Guancong Ma & Jian-Hua Jiang, 2024. "Observation of dynamic non-Hermitian skin effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Jaka Vodeb & Michele Diego & Yevhenii Vaskivskyi & Leonard Logaric & Yaroslav Gerasimenko & Viktor Kabanov & Benjamin Lipovsek & Marko Topic & Dragan Mihailovic, 2024. "Non-equilibrium quantum domain reconfiguration dynamics in a two-dimensional electronic crystal and a quantum annealer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Avik Dutt & Luqi Yuan & Ki Youl Yang & Kai Wang & Siddharth Buddhiraju & Jelena Vučković & Shanhui Fan, 2022. "Creating boundaries along a synthetic frequency dimension," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47186-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.