IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v606y2022i7912d10.1038_s41586-022-04609-0.html
   My bibliography  Save this article

Non-Hermitian chiral phononics through optomechanically induced squeezing

Author

Listed:
  • Javier Pino

    (AMOLF
    ETH Zürich)

  • Jesse J. Slim

    (AMOLF)

  • Ewold Verhagen

    (AMOLF)

Abstract

Imposing chirality on a physical system engenders unconventional energy flow and responses, such as the Aharonov–Bohm effect1 and the topological quantum Hall phase for electrons in a symmetry-breaking magnetic field. Recently, great interest has arisen in combining that principle with broken Hermiticity to explore novel topological phases and applications2–16. Here we report phononic states with unique symmetries and dynamics that are formed when combining the controlled breaking of time-reversal symmetry with non-Hermitian dynamics. Both of these are induced through time-modulated radiation pressure forces in small nano-optomechanical networks. We observe chiral energy flow among mechanical resonators in a synthetic dimension and Aharonov–Bohm tuning of their eigenmodes. Introducing particle-non-conserving squeezing interactions, we observe a non-Hermitian Aharonov–Bohm effect in ring-shaped networks in which mechanical quasiparticles experience parametric gain. The resulting complex mode spectra indicate flux-tuning of squeezing, exceptional points, instabilities and unidirectional phononic amplification. This rich phenomenology points the way to exploring new non-Hermitian topological bosonic phases and applications in sensing and transport that exploit spatiotemporal symmetry breaking.

Suggested Citation

  • Javier Pino & Jesse J. Slim & Ewold Verhagen, 2022. "Non-Hermitian chiral phononics through optomechanically induced squeezing," Nature, Nature, vol. 606(7912), pages 82-87, June.
  • Handle: RePEc:nat:nature:v:606:y:2022:i:7912:d:10.1038_s41586-022-04609-0
    DOI: 10.1038/s41586-022-04609-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04609-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04609-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamal H. Busnaina & Zheng Shi & Alexander McDonald & Dmytro Dubyna & Ibrahim Nsanzineza & Jimmy S. C. Hung & C. W. Sandbo Chang & Aashish A. Clerk & Christopher M. Wilson, 2024. "Quantum simulation of the bosonic Kitaev chain," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Zhujing Xu & Peng Ju & Xingyu Gao & Kunhong Shen & Zubin Jacob & Tongcang Li, 2022. "Observation and control of Casimir effects in a sphere-plate-sphere system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:606:y:2022:i:7912:d:10.1038_s41586-022-04609-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.