IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46920-6.html
   My bibliography  Save this article

Survival and rapid resuscitation permit limited productivity in desert microbial communities

Author

Listed:
  • Stefanie Imminger

    (Department of Microbiology and Ecosystem Science, University of Vienna
    Doctoral School in Microbiology and Environmental Science)

  • Dimitri V. Meier

    (Department of Microbiology and Ecosystem Science, University of Vienna
    University of Bayreuth)

  • Arno Schintlmeister

    (Department of Microbiology and Ecosystem Science, University of Vienna
    Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna)

  • Anton Legin

    (Institute of Inorganic Chemistry, University of Vienna)

  • Jörg Schnecker

    (Department of Microbiology and Ecosystem Science, University of Vienna)

  • Andreas Richter

    (Department of Microbiology and Ecosystem Science, University of Vienna)

  • Osnat Gillor

    (Blaustein Institutes for Desert Research, Ben Gurion University of the Negev)

  • Stephanie A. Eichorst

    (Department of Microbiology and Ecosystem Science, University of Vienna)

  • Dagmar Woebken

    (Department of Microbiology and Ecosystem Science, University of Vienna)

Abstract

Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with 2H2O followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth. Genome-resolved metatranscriptomics reveals that nearly all microbial populations resuscitate within minutes after simulated rain, independent of taxonomy, and invest their activity into repair and energy generation. Together, our data reveal a community that makes optimal use of short activity phases by fast and universal resuscitation enabling the maintenance of key ecosystem functions. We conclude that desert biocrust communities are highly adapted to surviving rapid changes in soil moisture and solute concentrations, resulting in high persistence that balances limited productivity.

Suggested Citation

  • Stefanie Imminger & Dimitri V. Meier & Arno Schintlmeister & Anton Legin & Jörg Schnecker & Andreas Richter & Osnat Gillor & Stephanie A. Eichorst & Dagmar Woebken, 2024. "Survival and rapid resuscitation permit limited productivity in desert microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46920-6
    DOI: 10.1038/s41467-024-46920-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46920-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46920-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Estelle Couradeau & Joelle Sasse & Danielle Goudeau & Nandita Nath & Terry C. Hazen & Ben P. Bowen & Romy Chakraborty & Rex R. Malmstrom & Trent R. Northen, 2019. "Probing the active fraction of soil microbiomes using BONCAT-FACS," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Jay T. Lennon & Frank den Hollander & Maite Wilke-Berenguer & Jochen Blath, 2021. "Principles of seed banks and the emergence of complexity from dormancy," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Richard Baran & Eoin L. Brodie & Jazmine Mayberry-Lewis & Eric Hummel & Ulisses Nunes Da Rocha & Romy Chakraborty & Benjamin P. Bowen & Ulas Karaoz & Hinsby Cadillo-Quiroz & Ferran Garcia-Pichel & Tre, 2015. "Exometabolite niche partitioning among sympatric soil bacteria," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    4. Tami L. Swenson & Ulas Karaoz & Joel M. Swenson & Benjamin P. Bowen & Trent R. Northen, 2018. "Linking soil biology and chemistry in biological soil crust using isolate exometabolomics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Lixin Wang & Wenzhe Jiao & Natasha MacBean & Maria Cristina Rulli & Stefano Manzoni & Giulia Vico & Paolo D’Odorico, 2022. "Dryland productivity under a changing climate," Nature Climate Change, Nature, vol. 12(11), pages 981-994, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah McLaughlin & Kateryna Zhalnina & Suzanne Kosina & Trent R. Northen & Joelle Sasse, 2023. "The core metabolome and root exudation dynamics of three phylogenetically distinct plant species," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Tilman Schmider & Anne Grethe Hestnes & Julia Brzykcy & Hannes Schmidt & Arno Schintlmeister & Benjamin R. K. Roller & Ezequiel Jesús Teran & Andrea Söllinger & Oliver Schmidt & Martin F. Polz & Andre, 2024. "Physiological basis for atmospheric methane oxidation and methanotrophic growth on air," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Yaoben Lin & Yuanbo Wang & Xingjun Lv & Shuangyan Yue & Hongmei Liu & Guangyu Li & Jinghui Zhao, 2023. "How to Improve the Benefits of Short-Term Fallow on Soil Physicochemical and Microbial Properties: A Case Study from the Yellow River Delta," Land, MDPI, vol. 12(7), pages 1-15, July.
    4. Blath, Jochen & Paul, Tobias & Tóbiás, András & Wilke Berenguer, Maite, 2024. "The impact of dormancy on evolutionary branching," Theoretical Population Biology, Elsevier, vol. 156(C), pages 66-76.
    5. Kiratu, Nixon Murathi & Aarnoudse, Eefje & Petrick, Martin, 2024. "Irrigation-nutrition linkages under farmer-led and public irrigation schemes in Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344347, International Association of Agricultural Economists (IAAE).
    6. Chen, Baili & Duan, Quntao & Zhao, Wenzhi & Wang, Lixin & Zhong, Yanxia & Zhuang, Yanli & Chang, Xueli & Dong, Chunyuan & Du, Wentao & Luo, Lihui, 2023. "Oasis sustainability is related to water supply mode," Agricultural Water Management, Elsevier, vol. 290(C).
    7. Alexa M. Nicolas & Ella T. Sieradzki & Jennifer Pett-Ridge & Jillian F. Banfield & Michiko E. Taga & Mary K. Firestone & Steven J. Blazewicz, 2023. "A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.
    9. Yichao Wu & Chengxia Fu & Caroline L. Peacock & Søren J. Sørensen & Marc A. Redmile-Gordon & Ke-Qing Xiao & Chunhui Gao & Jun Liu & Qiaoyun Huang & Zixue Li & Peiyi Song & Yongguan Zhu & Jizhong Zhou , 2023. "Cooperative microbial interactions drive spatial segregation in porous environments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Zheng Fu & Philippe Ciais & Jean-Pierre Wigneron & Pierre Gentine & Andrew F. Feldman & David Makowski & Nicolas Viovy & Armen R. Kemanian & Daniel S. Goll & Paul C. Stoy & Iain Colin Prentice & Dan Y, 2024. "Global critical soil moisture thresholds of plant water stress," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Ezoe, Ayana & Morimoto, Saori & Tanaka, Yuya & Katori, Makoto & Nishimori, Hiraku, 2024. "Switching particle systems for foraging ants showing phase transitions in path selections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    12. Wang, Yunqi & Peng, Yu & Lin, Jiaqi & Wang, Lixin & Jia, Zhikuan & Zhang, Rui, 2023. "Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis," Agricultural Water Management, Elsevier, vol. 290(C).
    13. Dennis Metze & Jörg Schnecker & Alberto Canarini & Lucia Fuchslueger & Benjamin J. Koch & Bram W. Stone & Bruce A. Hungate & Bela Hausmann & Hannes Schmidt & Andreas Schaumberger & Michael Bahn & Chri, 2023. "Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. den Hollander, Frank & Nandan, Shubhamoy, 2022. "Spatially inhomogeneous populations with seed-banks: II. Clustering regime," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 116-146.
    15. Jiao Feng & Yu-Rong Liu & David Eldridge & Qiaoyun Huang & Wenfeng Tan & Manuel Delgado-Baquerizo, 2024. "Geologically younger ecosystems are more dependent on soil biodiversity for supporting function," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yi Liu & Yun Yang & Wendong Chen & Feng Shen & Linhai Xie & Yingying Zhang & Yuanjun Zhai & Fuchu He & Yunping Zhu & Cheng Chang, 2023. "DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46920-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.