IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48289-y.html
   My bibliography  Save this article

Geologically younger ecosystems are more dependent on soil biodiversity for supporting function

Author

Listed:
  • Jiao Feng

    (Huazhong Agricultural University
    Huazhong Agricultural University)

  • Yu-Rong Liu

    (Huazhong Agricultural University
    Huazhong Agricultural University
    Huazhong Agricultural University)

  • David Eldridge

    (University of New South Wales)

  • Qiaoyun Huang

    (Huazhong Agricultural University
    Huazhong Agricultural University)

  • Wenfeng Tan

    (Huazhong Agricultural University
    Huazhong Agricultural University)

  • Manuel Delgado-Baquerizo

    (Av. Reina Mercedes 10)

Abstract

Soil biodiversity contains the metabolic toolbox supporting organic matter decomposition and nutrient cycling in the soil. However, as soil develops over millions of years, the buildup of plant cover, soil carbon and microbial biomass may relax the dependence of soil functions on soil biodiversity. To test this hypothesis, we evaluate the within-site soil biodiversity and function relationships across 87 globally distributed ecosystems ranging in soil age from centuries to millennia. We found that within-site soil biodiversity and function relationship is negatively correlated with soil age, suggesting a stronger dependence of ecosystem functioning on soil biodiversity in geologically younger than older ecosystems. We further show that increases in plant cover, soil carbon and microbial biomass as ecosystems develop, particularly in wetter conditions, lessen the critical need of soil biodiversity to sustain function. Our work highlights the importance of soil biodiversity for supporting function in drier and geologically younger ecosystems with low microbial biomass.

Suggested Citation

  • Jiao Feng & Yu-Rong Liu & David Eldridge & Qiaoyun Huang & Wenfeng Tan & Manuel Delgado-Baquerizo, 2024. "Geologically younger ecosystems are more dependent on soil biodiversity for supporting function," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48289-y
    DOI: 10.1038/s41467-024-48289-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48289-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48289-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lixin Wang & Wenzhe Jiao & Natasha MacBean & Maria Cristina Rulli & Stefano Manzoni & Giulia Vico & Paolo D’Odorico, 2022. "Dryland productivity under a changing climate," Nature Climate Change, Nature, vol. 12(11), pages 981-994, November.
    2. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    3. Andreas Schuldt & Thorsten Assmann & Matteo Brezzi & François Buscot & David Eichenberg & Jessica Gutknecht & Werner Härdtle & Jin-Sheng He & Alexandra-Maria Klein & Peter Kühn & Xiaojuan Liu & Keping, 2018. "Biodiversity across trophic levels drives multifunctionality in highly diverse forests," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Manuel Delgado-Baquerizo & Fernando T. Maestre & Antonio Gallardo & Matthew A. Bowker & Matthew D. Wallenstein & Jose Luis Quero & Victoria Ochoa & Beatriz Gozalo & Miguel García-Gómez & Santiago Soli, 2013. "Decoupling of soil nutrient cycles as a function of aridity in global drylands," Nature, Nature, vol. 502(7473), pages 672-676, October.
    5. Weigang Hu & Jinzhi Ran & Longwei Dong & Qiajun Du & Mingfei Ji & Shuran Yao & Yuan Sun & Chunmei Gong & Qingqing Hou & Haiyang Gong & Renfei Chen & Jingli Lu & Shubin Xie & Zhiqiang Wang & Heng Huang, 2021. "Aridity-driven shift in biodiversity–soil multifunctionality relationships," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minna Zhang & Manuel Delgado-Baquerizo & Guangyin Li & Forest Isbell & Yue Wang & Yann Hautier & Yao Wang & Yingli Xiao & Jinting Cai & Xiaobin Pan & Ling Wang, 2023. "Experimental impacts of grazing on grassland biodiversity and function are explained by aridity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Yinhong Hu & Weiwei Yu & Bowen Cui & Yuanyuan Chen & Hua Zheng & Xiaoke Wang, 2021. "Pavement Overrides the Effects of Tree Species on Soil Bacterial Communities," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    3. Angela Yaneth Landínez-Torres & Jessika Lucia Becerra Abril & Solveig Tosi & Lidia Nicola, 2020. "Soil Microfungi of the Colombian Natural Regions," IJERPH, MDPI, vol. 17(22), pages 1-28, November.
    4. Anita Zapałowska & Andrzej Skwiercz & Dawid Kozacki & Czesław Puchalski, 2024. "Employing Plant Parasitic Nematodes as an Indicator for Assessing Advancements in Landfill Remediation," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    5. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    6. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    7. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    9. Qiuju Wang & Xin Liu & Jingyang Li & Xiaoyu Yang & Zhenhua Guo, 2021. "Straw application and soil organic carbon change: A meta-analysis," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 112-120.
    10. Jonas Inkotte & Barbara Bomfim & Márcio Gonçalves da Rosa & Marco Bruno Xavier Valadão & Alcides Gatto & Juscelina Arcanjo Santos & Reginaldo Sergio Pereira, 2024. "Changes in Land Use through Eucalyptus Plantations Impact Soil Fauna Communities in Brazilian Savannas," Sustainability, MDPI, vol. 16(7), pages 1-14, April.
    11. Lianyu Zhou & Xuelan Ma & Longrui Wang & Wenjuan Sun & Yu Liu & Yun Ma & Huichun Xie & Feng Qiao, 2023. "Region and Crop Type Influenced Fungal Diversity and Community Structure in Agricultural Areas in Qinghai Province," Agriculture, MDPI, vol. 14(1), pages 1-19, December.
    12. Pilar Andrés & Enrique Doblas-Miranda & Stefania Mattana & Roberto Molowny-Horas & Jordi Vayreda & Moisès Guardiola & Joan Pino & Javier Gordillo, 2021. "A Battery of Soil and Plant Indicators of NBS Environmental Performance in the Context of Global Change," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    13. Wojciech Bierza & Gabriela Woźniak & Agnieszka Kompała-Bąba & Franco Magurno & Monika Malicka & Damian Chmura & Agnieszka Błońska & Andrzej M. Jagodziński & Zofia Piotrowska-Seget, 2023. "The Effect of Plant Diversity and Soil Properties on Soil Microbial Biomass and Activity in a Novel Ecosystem," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    14. Elizabeth M. Bach & Kelly S. Ramirez & Tandra D. Fraser & Diana H. Wall, 2020. "Soil Biodiversity Integrates Solutions for a Sustainable Future," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    15. Oksana Puzniak & Natalia Hrynchyshyn & Tetiana Datsko & Sylwia Andruszczak & Bohdan Hulko, 2022. "Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    16. Hongjian Wei & Yongqi Wang & Juming Zhang & Liangfa Ge & Tianzeng Liu, 2022. "Changes in Soil Bacterial Community Structure in Bermudagrass Turf under Short-Term Traffic Stress," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    17. Damian Chmura & Andrzej M. Jagodziński & Agnieszka Hutniczak & Artur Dyczko & Gabriela Woźniak, 2022. "Novel Ecosystems in the Urban-Industrial Landscape–Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    18. Huan He & Yixuan Liu & Yue Hu & Mengqi Zhang & Guodong Wang & Weibo Shen, 2020. "Soil Microbial Community and Its Interaction with Soil Carbon Dynamics Following a Wetland Drying Process in Mu Us Sandy Land," IJERPH, MDPI, vol. 17(12), pages 1-19, June.
    19. Rui Zhao & Junying Li & Kening Wu & Long Kang, 2021. "Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection," Land, MDPI, vol. 10(6), pages 1-29, June.
    20. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48289-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.