IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004547.html
   My bibliography  Save this article

Oasis sustainability is related to water supply mode

Author

Listed:
  • Chen, Baili
  • Duan, Quntao
  • Zhao, Wenzhi
  • Wang, Lixin
  • Zhong, Yanxia
  • Zhuang, Yanli
  • Chang, Xueli
  • Dong, Chunyuan
  • Du, Wentao
  • Luo, Lihui

Abstract

Oasis development relies on water supply and the supply mode can be divided into artesian piloting water (APW) mode and high-lift pumping water (HPW) mode. APW mode relies on gravity to retain and intercept water. HPW mode uses cascade pumping irrigation projects to transport water by up to 470 m, mainly serving extremely arid areas. A comprehensive analysis of the water-energy-food-ecology (WEFE) nexus to optimize water use management is conducive to the sustainable development of an oasis. Due to differences in water supply difficulty and cost, there are significant differences in socioeconomic development, water management, and drought adaptation between the APW and HPW oases. Taking the APW and HPW regions of Ningxia in the Yellow River Basin as the study areas, this study constructed a Bayesian network (BN) to quantify the causality and uncertainty in the WEFE nexus to analyze the development status and the evolving characteristics of the human-water relationships of the two regions. Scenario simulation based on BN quantified the impact and difference of management measures on the WEFE nexus in the two regions. During 2000–2020, as the APW region developed, agricultural water use decreased by 36%, showing great water-saving potential, while the development of the HPW region experienced water shortages. Excessive and inefficient agricultural water use is the main factor affecting the sustainability in both regions. Improving irrigation coefficient is the most effective way to reduce agricultural water use, and there is still a large adjustment space in agricultural water prices, channel lining rates and drip irrigation popularization areas to improve this coefficient. The adjustment of the planting structure will have great water-saving potential in the APW region, such as reducing rice area to 20,000 ha will save 5 × 108 m3 of water, but the potential is limited in the HPW area dominated by drought-resistant crops. In addition, improving wastewater treatment and ecological water use will effectively improve surface water quality and the ecological environment in the APW and HPW regions.

Suggested Citation

  • Chen, Baili & Duan, Quntao & Zhao, Wenzhi & Wang, Lixin & Zhong, Yanxia & Zhuang, Yanli & Chang, Xueli & Dong, Chunyuan & Du, Wentao & Luo, Lihui, 2023. "Oasis sustainability is related to water supply mode," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004547
    DOI: 10.1016/j.agwat.2023.108589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcot, Bruce G., 2012. "Metrics for evaluating performance and uncertainty of Bayesian network models," Ecological Modelling, Elsevier, vol. 230(C), pages 50-62.
    2. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    3. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    4. Yue Li & D. Conway & Yanjuan Wu & Qingzhu Gao & S. Rothausen & Wei Xiong & Hui Ju & Erda Lin, 2013. "Rural livelihoods and climate variability in Ningxia, Northwest China," Climatic Change, Springer, vol. 119(3), pages 891-904, August.
    5. Jianping Yang & Chunping Tan & Shijin Wang & Shengxia Wang & Yuan Yang & Hongju Chen, 2015. "Drought Adaptation in the Ningxia Hui Autonomous Region, China: Actions, Planning, Pathways and Barriers," Sustainability, MDPI, vol. 7(11), pages 1-28, November.
    6. Changhai Qin & Shan Jiang & Yong Zhao & Yongnan Zhu & Qingming Wang & Lizhen Wang & Junlin Qu & Ming Wang, 2022. "Research on Water Rights Trading and Pricing Model between Agriculture and Energy Development in Ningxia, China," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    7. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    8. Lixin Wang & Wenzhe Jiao & Natasha MacBean & Maria Cristina Rulli & Stefano Manzoni & Giulia Vico & Paolo D’Odorico, 2022. "Dryland productivity under a changing climate," Nature Climate Change, Nature, vol. 12(11), pages 981-994, November.
    9. Zhao, Wenzhi & Chang, Xuexiang & Chang, Xueli & Zhang, Dengrong & Liu, Bing & Du, Jun & Lin, Pengfei, 2018. "Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China," Agricultural Water Management, Elsevier, vol. 208(C), pages 478-489.
    10. Wu, Zheng & Tian, Guiliang & Xia, Qing & Hu, Hao & Li, Jiawen, 2023. "Connotation, calculation and influencing factors of the water-use rights benchmark price: A case study of agricultural water use in the Ningxia Yellow River irrigation area," Agricultural Water Management, Elsevier, vol. 283(C).
    11. Qin, Jingxiu & Duan, Weili & Chen, Yaning & Dukhovny, Viktor A. & Sorokin, Denis & Li, Yupeng & Wang, Xuanxuan, 2022. "Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Goncalves, J.M. & Pereira, L.S. & Fang, S.X. & Dong, B., 2007. "Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 93-108, December.
    13. Karimov, Akmal Kh. & Smakhtin, Vladimir & Karimov, Aziz A. & Khodjiev, Khalim & Yakubov, Sadyk & Platonov, Alexander & Avliyakulov, Mirzaolim, 2018. "Reducing the energy intensity of lift irrigation schemes of Northern Tajikistan- potential options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2967-2975.
    14. Chaochao Li & Wenfa Peng & Xiaojing Shen & Jingchao Gu & Yadong Zhang & Mingyang Li, 2023. "Comprehensive Evaluation of the High-Quality Development of the Ecological and Economic Belt along the Yellow River in Ningxia," Sustainability, MDPI, vol. 15(15), pages 1-22, July.
    15. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Xiaozhi Xiang & Jesper Svensson & Shaofeng Jia, 2017. "Will the energy industry drain the water used for agricultural irrigation in the Yellow River basin?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(1), pages 69-80, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    2. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    3. Shen, Xiaobo & Lin, Boqiang, 2017. "The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 21-28.
    4. Lotte Yanore & Jaap Sok & Alfons Oude Lansink, 2024. "Do Dutch farmers invest in expansion despite increased policy uncertainty? A participatory Bayesian network approach," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 93-115, January.
    5. Coelho, Eugênio Ferreira & Lima, Lenilson Wisner Ferreira & Stringam, Blair & de Matos, Aristoteles Pires & Santos, Dionei Lima & Reinhardt, Domingo Haroldo & de Melo Velame, Lucas & dos Santos, Carlo, 2024. "Water productivity in pineapple (Ananas comosus) cultivation using plastic film to reduce evaporation and percolation," Agricultural Water Management, Elsevier, vol. 296(C).
    6. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    7. Dalu Yu & Jieqing Yu & Di Wu & Yu Han & Bin Sun & Lishuang Zheng & Huanliang Chen & Rui Liu, 2023. "Isotopic and Hydrochemical Characteristics of the Changqing-Xiaolipu Water Resource, Jinan, Eastern China: Implications for Water Resources in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    8. Thomas Dufhues & Gertrud Buchenrieder & Zhanli Sun, 2021. "Exploring Policy Options in Regulating Rural–Urban Migration with a Bayesian Network: A Case Study in Kazakhstan," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(3), pages 553-577, June.
    9. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Chen Yue & Yong Qian & Feng Liu & Xiangxiang Cui & Suhua Meng, 2023. "Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    11. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    12. Kiratu, Nixon Murathi & Aarnoudse, Eefje & Petrick, Martin, 2024. "Irrigation-nutrition linkages under farmer-led and public irrigation schemes in Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344347, International Association of Agricultural Economists (IAAE).
    13. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    14. Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
    15. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    16. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    18. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    19. Kimberley Kolb Ayre & Colleen A. Caldwell & Jonah Stinson & Wayne G. Landis, 2014. "Analysis of Regional Scale Risk of Whirling Disease in Populations of Colorado and Rio Grande Cutthroat Trout Using a Bayesian Belief Network Model," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1589-1605, September.
    20. Karimov, Akmal Kh & Toshev, Rashid H. & Karshiev, Rustam & Karimov, Aziz A., 2021. "Water–energy nexus in Central Asia's lift irrigation schemes: Multi-level linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.