IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02356-9.html
   My bibliography  Save this article

Linking soil biology and chemistry in biological soil crust using isolate exometabolomics

Author

Listed:
  • Tami L. Swenson

    (Lawrence Berkeley National Laboratory)

  • Ulas Karaoz

    (Lawrence Berkeley National Laboratory)

  • Joel M. Swenson

    (Lawrence Berkeley National Laboratory)

  • Benjamin P. Bowen

    (Lawrence Berkeley National Laboratory
    DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek)

  • Trent R. Northen

    (Lawrence Berkeley National Laboratory
    DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek)

Abstract

Metagenomic sequencing provides a window into microbial community structure and metabolic potential; however, linking these data to exogenous metabolites that microorganisms process and produce (the exometabolome) remains challenging. Previously, we observed strong exometabolite niche partitioning among bacterial isolates from biological soil crust (biocrust). Here we examine native biocrust to determine if these patterns are reproduced in the environment. Overall, most soil metabolites display the expected relationship (positive or negative correlation) with four dominant bacteria following a wetting event and across biocrust developmental stages. For metabolites that were previously found to be consumed by an isolate, 70% are negatively correlated with the abundance of the isolate’s closest matching environmental relative in situ, whereas for released metabolites, 67% were positively correlated. Our results demonstrate that metabolite profiling, shotgun sequencing and exometabolomics may be successfully integrated to functionally link microbial community structure with environmental chemistry in biocrust.

Suggested Citation

  • Tami L. Swenson & Ulas Karaoz & Joel M. Swenson & Benjamin P. Bowen & Trent R. Northen, 2018. "Linking soil biology and chemistry in biological soil crust using isolate exometabolomics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02356-9
    DOI: 10.1038/s41467-017-02356-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02356-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02356-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Liu & Yun Yang & Wendong Chen & Feng Shen & Linhai Xie & Yingying Zhang & Yuanjun Zhai & Fuchu He & Yunping Zhu & Cheng Chang, 2023. "DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yaoben Lin & Yuanbo Wang & Xingjun Lv & Shuangyan Yue & Hongmei Liu & Guangyu Li & Jinghui Zhao, 2023. "How to Improve the Benefits of Short-Term Fallow on Soil Physicochemical and Microbial Properties: A Case Study from the Yellow River Delta," Land, MDPI, vol. 12(7), pages 1-15, July.
    3. Yichao Wu & Chengxia Fu & Caroline L. Peacock & Søren J. Sørensen & Marc A. Redmile-Gordon & Ke-Qing Xiao & Chunhui Gao & Jun Liu & Qiaoyun Huang & Zixue Li & Peiyi Song & Yongguan Zhu & Jizhong Zhou , 2023. "Cooperative microbial interactions drive spatial segregation in porous environments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Stefanie Imminger & Dimitri V. Meier & Arno Schintlmeister & Anton Legin & Jörg Schnecker & Andreas Richter & Osnat Gillor & Stephanie A. Eichorst & Dagmar Woebken, 2024. "Survival and rapid resuscitation permit limited productivity in desert microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02356-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.