IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p2899-d1619787.html
   My bibliography  Save this article

Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin

Author

Listed:
  • Baohua Han

    (Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, North 4 Rd., Shihezi 832003, China
    College of Life Sciences, Shihezi University, North 4 Rd., Shihezi 832003, China)

  • Liyang Cui

    (China Geological Survey Urumqi Comprehensive Survey Center on Natural Resources, Urumqi 830057, China)

  • Mengting Jin

    (China Geological Survey Urumqi Comprehensive Survey Center on Natural Resources, Urumqi 830057, China)

  • Hegan Dong

    (Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, North 4 Rd., Shihezi 832003, China
    College of Life Sciences, Shihezi University, North 4 Rd., Shihezi 832003, China)

Abstract

Plant functional traits are indicative of the long-term responses and adaptations of plants to their environment. However, the specific mechanisms by which desert plant functional groups (PFGs) adjust their ecological adaptation strategies to cope with harsh environments remain unclear, particularly in ecologically fragile farming–pastoral zones. To address this gap, this study investigates and analyzes the morphological and chemical characteristics of 13 desert plant species in the farming–pastoral zone of the northern Tarim Basin. Through cluster analysis, these desert plants were categorized into distinct PFGs to elucidate their ecological response strategies at a higher organizational level. The results were as follows: (1) Based on plant functional traits, the 13 desert plant species were classified into acquisitive, medium, and conservative PFGs. These groups exhibited significant differences in chemical element content and proportion, as well as morphological adjustments ( p < 0.05). (2) The acquisitive functional group maintained high resource acquisition and turnover through high specific leaf area and leaf phosphorus content; the medium functional group occupied limited resources through greater plant height and canopy width, whereas the conservative functional group exhibited low growth rates but high morphological investment to ensure survival. Moreover, these differences in ecological adaptation strategies led to the selection of divergent central traits by different PFGs. (3) Low soil nutrient availability and soil salinization, rather than groundwater depth, were identified as the primary environmental factors driving the differentiation of PFGs in the farming–pastoral zone. These findings suggest that desert plants in arid regions employ diverse ecological adaptation strategies to cope with environmental pressures. This research study provides valuable insights and recommendations for the conservation and restoration of desert plant communities.

Suggested Citation

  • Baohua Han & Liyang Cui & Mengting Jin & Hegan Dong, 2025. "Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin," Sustainability, MDPI, vol. 17(7), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:2899-:d:1619787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/2899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/2899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lixin Wang & Wenzhe Jiao & Natasha MacBean & Maria Cristina Rulli & Stefano Manzoni & Giulia Vico & Paolo D’Odorico, 2022. "Dryland productivity under a changing climate," Nature Climate Change, Nature, vol. 12(11), pages 981-994, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiratu, Nixon Murathi & Aarnoudse, Eefje & Petrick, Martin, 2024. "Irrigation-nutrition linkages under farmer-led and public irrigation schemes in Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344347, International Association of Agricultural Economists (IAAE).
    2. Chen, Baili & Duan, Quntao & Zhao, Wenzhi & Wang, Lixin & Zhong, Yanxia & Zhuang, Yanli & Chang, Xueli & Dong, Chunyuan & Du, Wentao & Luo, Lihui, 2023. "Oasis sustainability is related to water supply mode," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Stefanie Imminger & Dimitri V. Meier & Arno Schintlmeister & Anton Legin & Jörg Schnecker & Andreas Richter & Osnat Gillor & Stephanie A. Eichorst & Dagmar Woebken, 2024. "Survival and rapid resuscitation permit limited productivity in desert microbial communities," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Blanc-Blocquel, Augusto & Ortiz-Gracia, Luis & Oviedo, Rodolfo, 2024. "Efficient likelihood estimation of Heston model for novel climate-related financial contracts valuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 430-445.
    5. Yu, Bing & Shang, Songhao, 2024. "Integrated assessment of crop planting suitability: A case study in the Hetao Irrigation District of China using HJ-1A/1B satellite data," Agricultural Water Management, Elsevier, vol. 301(C).
    6. Jaime Martínez-Valderrama & Jorge Olcina & Gonzalo Delacámara & Emilio Guirado & Fernando T. Maestre, 2023. "Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2805-2834, May.
    7. Zheng Fu & Philippe Ciais & Jean-Pierre Wigneron & Pierre Gentine & Andrew F. Feldman & David Makowski & Nicolas Viovy & Armen R. Kemanian & Daniel S. Goll & Paul C. Stoy & Iain Colin Prentice & Dan Y, 2024. "Global critical soil moisture thresholds of plant water stress," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Wang, Yunqi & Peng, Yu & Lin, Jiaqi & Wang, Lixin & Jia, Zhikuan & Zhang, Rui, 2023. "Optimal nitrogen management to achieve high wheat grain yield, grain protein content, and water productivity: A meta-analysis," Agricultural Water Management, Elsevier, vol. 290(C).
    9. Jiao Feng & Yu-Rong Liu & David Eldridge & Qiaoyun Huang & Wenfeng Tan & Manuel Delgado-Baquerizo, 2024. "Geologically younger ecosystems are more dependent on soil biodiversity for supporting function," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:2899-:d:1619787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.