IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46626-9.html
   My bibliography  Save this article

The discovery of three-dimensional Van Hove singularity

Author

Listed:
  • Wenbin Wu

    (East China Normal University
    East China Normal University
    East China Normal University)

  • Zeping Shi

    (East China Normal University)

  • Mykhaylo Ozerov

    (Florida State University)

  • Yuhan Du

    (East China Normal University)

  • Yuxiang Wang

    (Fudan University)

  • Xiao-Sheng Ni

    (Sun Yat-Sen University)

  • Xianghao Meng

    (East China Normal University)

  • Xiangyu Jiang

    (East China Normal University)

  • Guangyi Wang

    (East China Normal University)

  • Congming Hao

    (East China Normal University)

  • Xinyi Wang

    (East China Normal University)

  • Pengcheng Zhang

    (East China Normal University)

  • Chunhui Pan

    (East China Normal University)

  • Haifeng Pan

    (East China Normal University)

  • Zhenrong Sun

    (East China Normal University)

  • Run Yang

    (Southeast University)

  • Yang Xu

    (East China Normal University)

  • Yusheng Hou

    (Sun Yat-Sen University)

  • Zhongbo Yan

    (Sun Yat-Sen University)

  • Cheng Zhang

    (Fudan University
    Fudan University)

  • Hai-Zhou Lu

    (Southern University of Science and Technology (SUSTech))

  • Junhao Chu

    (East China Normal University
    Fudan University)

  • Xiang Yuan

    (East China Normal University
    East China Normal University
    East China Normal University)

Abstract

Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase.

Suggested Citation

  • Wenbin Wu & Zeping Shi & Mykhaylo Ozerov & Yuhan Du & Yuxiang Wang & Xiao-Sheng Ni & Xianghao Meng & Xiangyu Jiang & Guangyi Wang & Congming Hao & Xinyi Wang & Pengcheng Zhang & Chunhui Pan & Haifeng , 2024. "The discovery of three-dimensional Van Hove singularity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46626-9
    DOI: 10.1038/s41467-024-46626-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46626-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46626-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peigang Li & Jahyun Koo & Wei Ning & Jinguo Li & Leixin Miao & Lujin Min & Yanglin Zhu & Yu Wang & Nasim Alem & Chao-Xing Liu & Zhiqiang Mao & Binghai Yan, 2020. "Author Correction: Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    2. Qi Wang & Yuanfeng Xu & Rui Lou & Zhonghao Liu & Man Li & Yaobo Huang & Dawei Shen & Hongming Weng & Shancai Wang & Hechang Lei, 2018. "Author Correction: Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Yong Hu & Xianxin Wu & Brenden R. Ortiz & Sailong Ju & Xinloong Han & Junzhang Ma & Nicholas C. Plumb & Milan Radovic & Ronny Thomale & Stephen D. Wilson & Andreas P. Schnyder & Ming Shi, 2022. "Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Y. Okamura & S. Minami & Y. Kato & Y. Fujishiro & Y. Kaneko & J. Ikeda & J. Muramoto & R. Kaneko & K. Ueda & V. Kocsis & N. Kanazawa & Y. Taguchi & T. Koretsune & K. Fujiwara & A. Tsukazaki & R. Arita, 2020. "Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Jeong Min Park & Yuan Cao & Kenji Watanabe & Takashi Taniguchi & Pablo Jarillo-Herrero, 2021. "Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene," Nature, Nature, vol. 590(7845), pages 249-255, February.
    6. Y. Hayashi & Y. Okamura & N. Kanazawa & T. Yu & T. Koretsune & R. Arita & A. Tsukazaki & M. Ichikawa & M. Kawasaki & Y. Tokura & Y. Takahashi, 2021. "Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Yuxuan Jiang & Maksim Ermolaev & Gela Kipshidze & Seongphill Moon & Mykhaylo Ozerov & Dmitry Smirnov & Zhigang Jiang & Sergey Suchalkin, 2022. "Giant g-factors and fully spin-polarized states in metamorphic short-period InAsSb/InSb superlattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Satoru Nakatsuji & Naoki Kiyohara & Tomoya Higo, 2015. "Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature," Nature, Nature, vol. 527(7577), pages 212-215, November.
    9. Sergey Borisenko & Daniil Evtushinsky & Quinn Gibson & Alexander Yaresko & Klaus Koepernik & Timur Kim & Mazhar Ali & Jeroen Brink & Moritz Hoesch & Alexander Fedorov & Erik Haubold & Yevhen Kushniren, 2019. "Time-reversal symmetry breaking type-II Weyl state in YbMnBi2," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. A. Piriou & N. Jenkins & C. Berthod & I. Maggio-Aprile & Ø. Fischer, 2011. "First direct observation of the Van Hove singularity in the tunnelling spectra of cuprates," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    11. Taishi Chen & Takahiro Tomita & Susumu Minami & Mingxuan Fu & Takashi Koretsune & Motoharu Kitatani & Ikhlas Muhammad & Daisuke Nishio-Hamane & Rieko Ishii & Fumiyuki Ishii & Ryotaro Arita & Satoru Na, 2021. "Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    12. Harley D. Scammell & Julian Ingham & Tommy Li & Oleg P. Sushkov, 2023. "Chiral excitonic order from twofold van Hove singularities in kagome metals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Mingu Kang & Shiang Fang & Linda Ye & Hoi Chun Po & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick & Eli Rotenberg & Efthimios Kaxiras & Joseph G. Checkelsky & Riccardo Comin, 2020. "Topological flat bands in frustrated kagome lattice CoSn," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    14. Peigang Li & Jahyun Koo & Wei Ning & Jinguo Li & Leixin Miao & Lujin Min & Yanglin Zhu & Yu Wang & Nasim Alem & Chao-Xing Liu & Zhiqiang Mao & Binghai Yan, 2020. "Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    15. Qi Wang & Yuanfeng Xu & Rui Lou & Zhonghao Liu & Man Li & Yaobo Huang & Dawei Shen & Hongming Weng & Shancai Wang & Hechang Lei, 2018. "Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Resta A. Susilo & Chang Il Kwon & Yoonhan Lee & Nilesh P. Salke & Chandan De & Junho Seo & Beomtak Kang & Russell J. Hemley & Philip Dalladay-Simpson & Zifan Wang & Duck Young Kim & Kyoo Kim & Sang-Wo, 2024. "High-temperature concomitant metal-insulator and spin-reorientation transitions in a compressed nodal-line ferrimagnet Mn3Si2Te6," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hasan Siddiquee & Christopher Broyles & Erica Kotta & Shouzheng Liu & Shiyu Peng & Tai Kong & Byungkyun Kang & Qiang Zhu & Yongbin Lee & Liqin Ke & Hongming Weng & Jonathan D. Denlinger & L. Andrew Wr, 2023. "Breakdown of the scaling relation of anomalous Hall effect in Kondo lattice ferromagnet USbTe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xianyang Lu & Zhiyong Lin & Hanqi Pi & Tan Zhang & Guanqi Li & Yuting Gong & Yu Yan & Xuezhong Ruan & Yao Li & Hui Zhang & Lin Li & Liang He & Jing Wu & Rong Zhang & Hongming Weng & Changgan Zeng & Yo, 2024. "Ultrafast magnetization enhancement via the dynamic spin-filter effect of type-II Weyl nodes in a kagome ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Li Huang & Xianghua Kong & Qi Zheng & Yuqing Xing & Hui Chen & Yan Li & Zhixin Hu & Shiyu Zhu & Jingsi Qiao & Yu-Yang Zhang & Haixia Cheng & Zhihai Cheng & Xianggang Qiu & Enke Liu & Hechang Lei & Xia, 2023. "Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Hangyu Zhou & Manuel dos Santos Dias & Youguang Zhang & Weisheng Zhao & Samir Lounis, 2024. "Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Xiaokang Li & Jahyun Koo & Zengwei Zhu & Kamran Behnia & Binghai Yan, 2023. "Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Rina Tazai & Youichi Yamakawa & Hiroshi Kontani, 2023. "Charge-loop current order and Z3 nematicity mediated by bond order fluctuations in kagome metals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Cong Li & Jianfeng Zhang & Yang Wang & Hongxiong Liu & Qinda Guo & Emile Rienks & Wanyu Chen & Francois Bertran & Huancheng Yang & Dibya Phuyal & Hanna Fedderwitz & Balasubramanian Thiagarajan & Macie, 2023. "Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Jiangang Yang & Xinwei Yi & Zhen Zhao & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Yuhan Ye & Jing-Yang You & Bo Gu & Shenjin Zhang & Fengfeng Zhang & Feng Yang & Zhimi, 2023. "Observation of flat band, Dirac nodal lines and topological surface states in Kagome superconductor CsTi3Bi5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Shijie Xu & Bingqian Dai & Yuhao Jiang & Danrong Xiong & Houyi Cheng & Lixuan Tai & Meng Tang & Yadong Sun & Yu He & Baolin Yang & Yong Peng & Kang L. Wang & Weisheng Zhao, 2024. "Universal scaling law for chiral antiferromagnetism," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Changmin Lee & Praveen Vir & Kaustuv Manna & Chandra Shekhar & J. E. Moore & M. A. Kastner & Claudia Felser & Joseph Orenstein, 2022. "Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    15. Yong Hu & Junzhang Ma & Yinxiang Li & Yuxiao Jiang & Dariusz Jakub Gawryluk & Tianchen Hu & Jérémie Teyssier & Volodymyr Multian & Zhouyi Yin & Shuxiang Xu & Soohyeon Shin & Igor Plokhikh & Xinloong H, 2024. "Phonon promoted charge density wave in topological kagome metal ScV6Sn6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yigui Zhong & Shaozhi Li & Hongxiong Liu & Yuyang Dong & Kohei Aido & Yosuke Arai & Haoxiang Li & Weilu Zhang & Youguo Shi & Ziqiang Wang & Shik Shin & H. N. Lee & H. Miao & Takeshi Kondo & Kozo Okaza, 2023. "Testing electron–phonon coupling for the superconductivity in kagome metal CsV3Sb5," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Changwon Park & Young-Woo Son, 2023. "Condensation of preformed charge density waves in kagome metals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Yu-Bo Liu & Jing Zhou & Congjun Wu & Fan Yang, 2023. "Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Han Yan & Hongye Mao & Peixin Qin & Jinhua Wang & Haidong Liang & Xiaorong Zhou & Xiaoning Wang & Hongyu Chen & Ziang Meng & Li Liu & Guojian Zhao & Zhiyuan Duan & Zengwei Zhu & Bin Fang & Zhongming Z, 2024. "An antiferromagnetic spin phase change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46626-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.